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Abstract 

 
Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the 
concentration of dopamine, which can disrupt motor activity and cause different degrees of 
gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a 
complex, time-consuming, and challenging task that relays on physicians' subjective 
evaluation of visual observations, gait disturbance has been extensively explored to make 
automatic detection of PD diagnosis and severity rating and provides auxiliary information for 
physicians' decisions using gait data from various acquisition devices. Among them, wearable 
sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in 
this application scenario. In this paper, an attention-based temporal network (ATN) is designed 
for the time series structure of gait data (vertical ground reaction force signals) from foot 
sensor systems, to learn the discriminative differences related to PD severity levels hidden in 
sequential data. The structure of the proposed method is illuminated by Transformer Network 
for its success in excavating temporal information, containing three modules: a preprocessing 
module to map intra-moment features, a feature extractor computing complicated gait 
characteristic of the whole signal sequence in the temporal dimension, and a classifier for the 
final decision-making about PD severity assessment. The experiment is conducted on the 
public dataset PDgait of VGRF signals to verify the proposed model's validity and show 
promising classification performance compared with several existing methods.  
 
 
Keywords: Parkinson's disease, Gait signals, Severity rating, Vertical ground reaction force, 
Transformer network. 
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1. Introduction 

Parkinson’s disease (PD) is a typical, chronic neurodegenerative disease involving the 
concentration of dopamine, a neurotransmitter in the brain with the ability to regulate and 
control emotion and muscles [1]. As the second most prevalent neurodegenerative disease after 
Alzheimer's, Parkinson's disease affects a large number of people severely and wreaks havoc 
on the quality of life for patients. With the persistent apoptosis of dopamine neurons in the 
midbrain areas which work with the mechanisms that release dopamine and project it to other 
cortical areas, these PD patients inevitably begin to experience deterioration in their 
manipulating capability of the muscle and manifest levels of dysfunctions including speech 
disabilities, gait abnormalities, attention-deficit disorders, and impulsivity [2]. Among these 
symptoms, gait abnormality is one of the major clinical characteristics of Parkinson's disease 
and its specific manifestation constantly evolves as the course of the illness progresses, which 
provides a significant foundation for synthesis diagnosis or state analysis.  The current 
diagnosis of Parkinson's disease is commonly based on the specialist's observation and criteria 
of the patient's behavioral traits. Inevitably there are problems of subjectivity and time 
consuming with this mode of diagnosis, which demonstrates the significance of developing 
auxiliary diagnostic technology to monitor patient status and aid physician judgment. 

Several kinds of subsidiary sensors [3], [4] are utilized in human gait data collection under 
various modalities with different working principles which helps with studies of PD auxiliary 
diagnosis. Among them, wearable sensors [5] worn on the human body that works by sensing 
inertia or pressure are more convenient and appropriate for practical application than those 
having requirements to be deployed in the environment which limits the subjects' scope of 
activity, due to their needs for daily living and long-term monitoring. Pressure sensors [6], [7] 
are efficiently applied to research by deploying them on the soles of the subject's feet 
measuring the vertical ground reaction force (VGRF) of the subject's natural walking. 

Machine learning methods used in literature, such as random forest (RF) [8], support vector 
machine (SVM) [9], and naive Bayesian (NB) [10], have been explored fully to handle and 
analyze sensor signals for PD computer-assisted diagnosis and obtained promising 
achievement. Then, other studies developed sophisticated deep neural networks for PD 
severity recognition on account of gait signal data, and they exhibited considerable 
classification performance [11], [12]. Nevertheless, there are certain limitations in these 
approaches that most of them are not specifically designed for the data with temporal structures, 
whereas the gait signals recorded by wearable sensors hold important temporal information 
which is closely bound up with the severity of Parkinson's disease. In addition, some methods 
[6], [13] that are designed to be a recurrent structure tailored to sequential data inevitably incur 
high computational overhead when processing a long sequence. 

Along with deep learning techniques progressing rapidly, the Transformer [14] was 
proposed with the goal of coping with long sequence input and reducing sequential 
computation in natural language processing, and has reached many other fields and performed 
well with its appropriate structural design whose self-attention mechanism breaks the rule of 
serial computation by calculating mutual correlation among feature vectors from intra-
sequence time steps. The method of this structure and mechanism is eminently suitable for 
modeling gait sequential signals. 

Hence, the Transformer is applied to the PD abnormal gait recognition task by creating an 
attention-based temporal network (ATN) with data input of VGRF signals in our work. 
Designed ATN contains three main submodules: a preprocessing module reducing the 
interference from outliers in source data and performing feature mapping within each time 
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step, a temporal feature extraction module to explore complex gait information from data in 
the direction of time series, and a decision classifier which maps gait-related discriminative 
characteristics into the category dimension to calculate the probability of belonging to each 
class and make the final decision about PD severity diagnosis. 

The remainder of this paper is organized based on the following sections. Section 2 looks 
at the related works. Section 3 describes the proposed method. Section 4 gives a detailed 
presentation about the experiment setting and discusses the results. Finally, we conclude the 
whole paper and outline possible future works in Section 5. 

2. Related Work 
Advances in modern computer-aided diagnosis have been made thanks to the proposal and 
utilization of various machine learning algorithms, some of which have been explored and 
applied to PD diagnosis coupled with stage rating of Parkinson's disease under the supervision 
of several accepted integrated scales, such as Hoehn & Yahr (H&Y) [15] and unified 
Parkinson’s disease rating scale (UPDRS) [16]. These studies mostly understand and explore 
gait-related sensor signal data by means of handcraft or automatic feature extraction. 

Human gait can be regarded as a series of alternate movements of the lower limbs in a 
rhythmic pattern, which leads to the recorded sensor signal sequences necessarily exhibiting 
periodic characteristics consistent with the gait cycle [17]. Thus, some studies have taken this 
perspective to calculate several statistical parameters (such as median, mean, period length, 
standard deviation, and kurtosis) of sequential data as the feature vector for the distinction 
between PD patients and healthy subjects. 

For example, Abdulhay et al. [18] manually calculated different statistics, including swing 
phases, stance time, and stride time, as temporal features from VGRF signals, and then use a 
medium Gaussian SVM to classify the extracted features and implement PD detection. In [19], 
statistical analysis was performed on gait time series data to identify salient features, and four 
different machine learning classifiers, including ensemble classifier (EC) [20], support vector 
machine (SVM) [21], Bayes classifier (BC) [22], and decision tree (DT) [23], were utilized to 
obtain the optimal classification performance. 

Driven by the shortfalls of handcraft methods, deep learning algorithms emerge with the 
ability to automatically select feature vectors in a way that minimizes the loss function. 
Recurrent and convolutional neural networks (RNNs and CNNs) are two kinds of typical 
network architectures for classification tasks [24], [25]. In [13], Flagg et al. utilized a bi-
direction recurrent neural network (BiRNN) to extract gait features for the purpose of foot 
pressure data streaming evaluation. Nevertheless, the recursive computation order of RNNs 
retraced the past memory information using the output of the previous time step which makes 
its calculation clumsy and time-consuming. In order to improve the computational efficiency, 
Maachi et al. [26] utilized a 1D-CNN classifier and convolve along the temporal direction of 
the feature matrix A one-dimensional convolution kernel to integrate temporal information. 
This design can make models compute features for all time steps simultaneously, but it lacks 
flexibility for varying sequence lengths. 

These researches have conducted exhaustive analysis of gait pressure data from wearable 
sensors and obtained good discrimination results with a view of the advantages of wearable 
equipment free from space constraints, which provides a great development for Parkinson's 
disease auxiliary diagnosis. However, these methods did not flexibly model the temporal 
dynamics of gait signal sequences recorded by wearable devices. 
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In order to explore intra-signal temporal dependencies related to PD severity levels from 
gait movement with limited computational overhead, we propose a data-driven PD detection 
model using an attention-based temporal network to model patients’ gait dynamics. With the 
sequential VGRF signal data, the self-attention mechanism of the Transformer network is 
suitable for temporal feature excavation on account of its flexibility for changing series and 
parallel computing capability to capture PD-related gait information, which can improve the 
detecting sensitivity and carry on to the diversity and complexity of movement behavior 
objective analysis. The experimental results illustrate that the ability of our proposed method 
to assess the PD severity scale is superior to the above state-of-art approaches. 

3. Methods 
The proposed attention-based temporal network (ATN) framework is shown in Fig. 1 which 
gets the VGRF signals as input and outputs the detection result of PD severity rating to assist 
doctors in decision-making. ATN model is comprised of three components: a data 
preprocessing module mapping raw data into a uniform dimension, a temporal feature 
extraction based on a self-attention mechanism to capture discriminative temporal features, 
and a classifier making a final decision. 
 

 
Fig. 1. The architecture of ATN model. There are three modules in this model: a preprocessing 
module for data normalization, a temporal feature extraction module for discriminative feature 

learning, and a softmax classifier for decision making. 
 

3.1 VGRF data preprocessing 
The VGRF data collected is in the form of variable-length signal sequences, and each of them 
has a label indicating the category assigned to it which is associated with the subject's PD 
severity whom it is from. In order to successfully identify the severity level, we first split it 
into multiple partially overlapping small segments. Each small segment is a subset of the 
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original sequence containing rich gait information about the subject while further expanding 
the scale of data.  

 
Fig. 2. Workflow of data preprocessing. The raw data is 𝒳𝒳 ∈ ℝ𝑇𝑇×𝑁𝑁 from a time period of length 𝑇𝑇. 

Function 𝒩𝒩 and 𝒮𝒮 normalize the values of 𝑁𝑁 features of the data 𝒳𝒳 in turn. The output 𝒳𝒳� ∈ ℝ𝑇𝑇×𝑁𝑁 can 
be entered into 𝑇𝑇 tokens in the temporal feature extraction module. 

 
As shown in Fig. 2, a VGRF signal subsequence obtained by intercepting can be defined 

as 𝒳𝒳 = {𝑥𝑥𝑖𝑖 ∈ ℝ𝑁𝑁 ∣ 𝑖𝑖 = 1,2, . . . ,𝑇𝑇}  where 𝑇𝑇  represents the subsequence's length. 𝑥𝑥𝑖𝑖 =
{𝛼𝛼1,𝛼𝛼2, . . . ,𝛼𝛼𝑁𝑁} is a one-dimensional vector of the number of collected signals 𝑁𝑁 at each time 
instant, and its value is related to the scale of the sensor system currently working. 𝛼𝛼𝑗𝑗 is the 
VGRF signal value measured by the 𝑗𝑗-th sensor in the system at time step 𝑖𝑖. Taking into 
account uncertainty in measurement magnitude as well as the possibility of outliers, the 
original data 𝒳𝒳  needs to be preprocessed to normalize the values of its elements into the 
partition [0,1] and make it fit the normal distribution to increase the stability of predictions. 
The preprocessing process is formulated as 
 

𝒳𝒳� = 𝒮𝒮(𝒩𝒩(𝒳𝒳))
𝒩𝒩(𝐴𝐴) = 𝐴𝐴−𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝒮𝒮(𝐴𝐴) = 𝐴𝐴−𝜇𝜇
𝜎𝜎

, 𝐴𝐴 = [𝑎𝑎𝑖𝑖,𝑗𝑗]𝑛𝑛×𝑚𝑚

     (1) 

 
where the function 𝒩𝒩  and 𝒮𝒮  describe the computation process of normalization and 
standardization method respectively, and 𝐴𝐴 denotes any two-dimensional matrix of size 𝑛𝑛 × 𝑚𝑚. 
𝜇𝜇 and 𝜎𝜎 describe the distribution of all elements in matrix 𝐴𝐴 as their mean and variance. 

So far, we have get preprocessed input data 𝒳𝒳� = [𝑥𝑥�1,𝑥𝑥�2, . . . , 𝑥𝑥�𝑁𝑁]T whose shape is 𝑇𝑇 × 𝑁𝑁 
consistent with that of original data 𝒳𝒳. Before being sent to the next module for effective PD-
related temporal feature extraction, the data 𝒳𝒳� needs to go through a feature mapping layer 
consisting of multi-layer perception (MLP) which maps low-dimensional original data into a 
uniform high-dimensional space dimension 𝑃𝑃. 
 

𝐹𝐹� = 𝒳𝒳� ⋅𝒲𝒲      (2) 
 

As shown in (2), 𝐹𝐹� ∈ ℝ𝑇𝑇×𝑃𝑃 is the high-dimensional features transformed through matrices 
multiplication with weight matrix 𝒲𝒲 ∈ ℝ𝑁𝑁×𝑃𝑃. The process is a transformation in the feature 
dimension from 𝑁𝑁 to 𝑃𝑃, in which parameters at every instant are shared with each other and 
there is nothing changed in the time direction. 
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3.2 Temporal feature extraction 
The purpose of this section is to explore the data in temporal direction 𝑇𝑇 and then output 
discriminative gait feature 𝐹𝐹𝑡𝑡 ∈ ℝ𝑅𝑅 related to PD severity levels from 2-dimensional primary 
feature tensor 𝐹𝐹� ∈ ℝ𝑇𝑇×𝑃𝑃. The temporal feature extraction module designed here follows the 
computational principles of the Transformer with the attention mechanism as the core, which 
has the capability to mine temporal global dependency information from the input data in 
parallel. 

The feature extractor is stacked by multiple Transformer blocks as depicted in its 
architecture, and each of them undertakes the function of feature extraction layer by layer. In 
order to meet the input specification of Transformer blocks, we first need to adjust input 𝐹𝐹�𝑡𝑡 to 
divide tokens along the dimension 𝑇𝑇 and add location information describing the temporal 
relationship between tokens. 
 

𝐹𝐹 = 𝒫𝒫 + [𝑓𝑓0 ∣ 𝐹𝐹�]T

𝒫𝒫𝑖𝑖,𝑗𝑗 = {
𝑠𝑠𝑖𝑖𝑛𝑛(𝑖𝑖 × 𝜔𝜔𝑗𝑗), 𝑗𝑗 % 2 = 1
𝑐𝑐𝑐𝑐𝑠𝑠�𝑖𝑖 × 𝜔𝜔𝑗𝑗�, 𝑗𝑗 % 2 = 0

    (3) 

 
As shown in (3), input feature metric 𝐹𝐹� = [𝑓𝑓1,𝑓𝑓2, . . . ,𝑓𝑓𝑁𝑁]T ∈ ℝ𝑇𝑇×𝑅𝑅 is divided in 𝑇𝑇 tokens 

along the primary dimension and each one represents a feature vector at a time step. And an 
extra learnable token 𝑓𝑓0 as CLASS Token is concatenated with 𝐹𝐹�  for the final classification 
task. As an attention mechanism, the kernel of this extractor discovers the inter-token 
dependency relationships via similarity calculation computation with additional needs of 
sequence information which is embedded in the inherent architecture of convolutional and 
recurrent networks, the positional encoding tensor 𝑃𝑃 ∈ ℝ(𝑇𝑇+1)×𝑅𝑅  is added into 𝑇𝑇 + 1 
characteristic tokens through element-wise addition operations as the input of Transformer 
blocks, the basic unit of the module. In (3), 𝑖𝑖 is the position index of 𝑇𝑇 + 1 time steps, 𝜔𝜔𝑗𝑗 is 
the handcraft frequency for each dimension 𝑗𝑗 and % represents the modulo operation. The 
complete tokens 𝐹𝐹 = {𝑓𝑓0,𝑓𝑓1,𝑓𝑓2, . . . ,𝑓𝑓𝑇𝑇} containing both characteristic and temporal position 
information are calculated and will be sent into stacked Transformer blocks for multi-layer 
temporal feature aggregation. The structure of the kernel attention module is shown in Fig. 3. 
 

 
Fig. 3. Structure of attention module. 
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The 𝑖𝑖-th attention module gets features �𝑓𝑓0𝑖𝑖−1,𝑓𝑓1𝑖𝑖−1, . . . , 𝑓𝑓𝑇𝑇𝑖𝑖−1� composed of 𝑇𝑇 + 1 tokens 
from layer (𝑖𝑖 − 1)  as input, then make calculation and output 𝑖𝑖 -th layer's features 
{𝑓𝑓0𝑖𝑖,𝑓𝑓1𝑖𝑖, . . . ,𝑓𝑓𝑇𝑇𝑖𝑖} which will go to the next attention module. This module has two basic cells 
based on a softmax function 𝜓𝜓 and matrix multiplication. The calculation equations are as 
follows: 
 

𝑓𝑓𝑗𝑗𝑖𝑖 = � 𝑣𝑣𝑗𝑗𝑖𝑖−1𝑠𝑠𝑗𝑗,𝑘𝑘
𝑖𝑖−1

𝑇𝑇

𝑘𝑘=0

𝑠𝑠𝑗𝑗,𝑘𝑘
𝑖𝑖−1 = 𝜓𝜓�

𝑞𝑞𝑗𝑗
𝑚𝑚−1𝑘𝑘𝑗𝑗

𝑚𝑚−1

√𝑑𝑑
�

𝑣𝑣𝑗𝑗𝑖𝑖−1 = 𝜉𝜉�𝑓𝑓𝑗𝑗𝑖𝑖−1𝑊𝑊𝑉𝑉�
𝑞𝑞𝑗𝑗𝑖𝑖−1 = 𝜉𝜉�𝑓𝑓𝑗𝑗𝑖𝑖−1𝑊𝑊𝑄𝑄�
𝑘𝑘𝑗𝑗𝑖𝑖−1 = 𝜉𝜉�𝑓𝑓𝑗𝑗𝑖𝑖−1𝑊𝑊𝐾𝐾�

     (4) 

 
where 𝑊𝑊𝑉𝑉 ,𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾 ∈ ℙ𝑃𝑃 are weight metrics of value vector 𝑣𝑣𝑗𝑗𝑖𝑖−1, query vector  𝑞𝑞𝑗𝑗𝑖𝑖−1  and key 
vector 𝑘𝑘𝑗𝑗𝑖𝑖−1  corresponding to 𝑗𝑗 -th feature vector 𝑓𝑓𝑗𝑗𝑖𝑖−1 , and 𝑑𝑑  is the feature dimension to 
perform a scale operation. 𝜉𝜉  is an activation function providing nonlinear transformation. 
These weight metrics are all learnable, which makes the attention module independently learn 
temporal characteristics via inter-token scaled dot-product attention computation. 

When passing the last transformer block, the class token 𝐹𝐹𝑡𝑡 ∈ ℝ𝑃𝑃 with index 0 is output by 
the whole temporal feature extractor as the final discriminative feature as shown in the model 
framework. In the next subsection, the classifier will make the final decision using feature 𝐹𝐹𝑡𝑡. 

3.3 Classifier 
The classifier is a multi-class decision-making module composed of a full-connection layer 
and a softmax function 𝜓𝜓. The weight metric 𝑾𝑾 ∈ ℝ𝑷𝑷×𝑪𝑪 maps the input feature 𝑭𝑭𝒕𝒕 of length 
𝑷𝑷 into the dimension of the number of severity classes 𝑪𝑪. Then the probability that this sample 
belongs to each class 𝟏𝟏,𝟐𝟐, … ,𝑪𝑪 is calculated by the softmax function 𝝍𝝍. 𝒚𝒚� is the model's final 
prediction result determined depending on the maximum of the calculated conditional 
probability of each class. 
 

𝑦𝑦� = 𝜓𝜓(𝐹𝐹𝑡𝑡𝑊𝑊)

𝜓𝜓(𝑍𝑍) = arg𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖

𝑒𝑒𝑧𝑧𝑚𝑚

� 𝑒𝑒𝑧𝑧𝑗𝑗
𝐶𝐶

𝑗𝑗=1

      (5) 

 

4. Experiment 
In this section, we conduct experiments using the Pytorch and Python libraries to implement 
our proposed method for the PD stage rating task on a public dataset PDgait, which records 
sequences of plantar pressure signals from subjects with varying severity of Parkinson's 
disease. Details about experimental settings and result analysis will be presented as follows. 
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4.1 Experimental setup 

4.1.1 Experimental data 
In this work, the dataset we utilize to verify the effectiveness of our proposed method is the 
timing gait signal dataset PDgait from the Physionet databank. The data within PDgait is time 
series pressure signals of variable length. While gathering data, the organizers attached force-
sensitive resistors to the soles of the subject's feet to the vertical ground force (VGRF) between 
feet and ground. There were 8 sensors under each sole, and the ones on the left and right foot 
were symmetrically distributed. The positions and relative coordinates of a total of 16 sensors 
are presented in Fig. 4. And they synchronously recorded VGRF signals at a sampling 
frequency of 100 Hz. Hence, VGRF signals obtained follow a 16 × 𝑡𝑡 × 100 , where 16 
denotes the dimension of gait signals at each sampling instant, 𝑡𝑡 is the length of this gait 
sequence in seconds, and 100 corresponds to the sampling number per unit of time. Hence, 
𝑡𝑡 × 100 equals to time steps of a signal sequence.  
 

 
Fig. 4. The position coordinate of sensors measuring VGRF signals in rectangular coordinate system. 

 
Table 1. Demographic information of volunteers collected VGRF signal data in PDgait 

Dataset Category 
Subject Age (year) Weight 

(kg) 
Height 

(m) Female Male < 𝟕𝟕𝟕𝟕 ≥ 𝟕𝟕𝟕𝟕 

Ga [28] PD subject 9 20 13 16 73.1 ± 11.3 1.67 ± 0.06 
Healthy Co 5 10 10 8 74.2 ± 12.6 1.68 ± 0.09 

Si [29] PD subject 13 22 28 7 70.3 ± 8.35 1.66 ± 0.08 
Healthy Co 11 18 27 2 71.5 ± 11.03 1.60 ± 0.07 

Ju [30] PD subject 13 16 19 10 75.1 ± 16.9 1.97 ± 0.16 
Healthy Co 14 12 20 6 66.8 ± 11.08 1.83 ± 0.07 

 
Dataset PDgait collected VGRF records from 166 volunteers including 93 patients with 

Parkinson's disease and 73 healthy controls. The demographic information of these subjects is 
given in Table 1. The patients all had Parkinson's disease of different severity, and their 
severity levels had been marked according to the H&Y scale which contains a total of eight 
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PD severity ratings: Healthy status 0, Severity 1, 1.5, 2, 2.5, 3, 4, and 5.  And our dataset 
involves four of these stages: Healthy, Severity 2, Severity 2.5, and Severity 3. This dataset is 
composed of three small datasets contributed by Frenkel-Toledo et al. [28], Yogev et al. [29], 
and Hausdorff et al. [30]. To maintain clarity and brevity, these datasets are referred to as Si, 
Ga, and Ju, based on the lead authors’ names, indicating the study from which the data 
originated. When collecting gait signals, they were required to perform test tasks with sensors: 
walking directly on level ground, treadmill walking, or walking with rhythmic auditory 
stimulation. Fig. 5 presents line graphs depicting gait signal patterns recorded during walking 
for different severity levels of Parkinson’s disease which illustrate the signal changes and the 
progression of PD symptoms from Healthy stage to Severity 3. From (a) to (d) in Fig. 5, we 
can find that patients’ walking shows more pronounced stagnation as the disease progresses, 
although the difference is little clear in Fig. 5 (a) and Fig. 5 (b). And Table 2 gives the 
composition of the PD severity level of subjects who participated in walking tests in three 
datasets, and we use them as truth values to realize the effectiveness evaluation of the proposed 
method in this section. 
 

  
(a) Healthy (b) Severity 2 

  
(c) Severity 2.5 (d) Severity 3 

Fig. 5. Gait signal plots for different Parkinson’s disease Severity levels. 
 

Table 2. The composition of severity rating truth of subjects based on H&Y Scale in three datasets 
Severity Ga [28] Si [29] Ju [30] 
Healthy 18 29 26 

Severity 2 15 29 12 
Severity 2.5 8 6 13 
Severity 3 6 0 4 
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4.1.2 Implementation details 
The experiment of this model is implemented in the system of GTX 3080 GPU, i7-11700 CPU, 
and 12-GB RAM. The dataset is divided into three parts according to proportion for 
experiments: 60% as the training set, 20% as the validation set, and 20% for final testing. The 
partition process is carried out based on the truth labels to ensure a balanced data distribution. 
For PDgait, the shape of a sample is 100 × 18 in which 100 is the temporal length 𝑇𝑇 set based 
on the sensor's sampling frequency 100 Hz, and input feature dimension 18  contains 16 
VGRF signals from two feet and 2 statistics. The hidden layer feature dimension of this model 
is set to 32 with data dimension and computation time considered. The training process is 
iterated 200 times with a learning rate of 0.01.  

4.2 Performance metrics 
We use several performance metrics to ensure an objective evaluation of the model, including 
accuracy (Acc), Precision, Recall, and F1-score. Their calculation formulas are as follows: 
 

𝐴𝐴𝑐𝑐𝑐𝑐(%) = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁
𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃+𝐹𝐹𝑁𝑁

× 100%

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑛𝑛(%) = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

× 100%

𝑅𝑅𝑃𝑃𝑐𝑐𝑎𝑎𝑅𝑅𝑅𝑅(%) = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

× 100%

𝐹𝐹1-𝑠𝑠𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃(%) = 2×𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛×𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛+𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

× 100%

    (6) 

 
in which 𝑇𝑇𝑃𝑃 (true positives) is the number of samples whose labels are positive and prediction 
results are true, 𝑇𝑇𝑁𝑁  is the number of true negatives, 𝐹𝐹𝑃𝑃  represents the number of false 
positives, and 𝐹𝐹𝑁𝑁 donates the number of false negatives. Among these performance metrics, 
Acc describes the proportion of correct classification, Precision discovers the cost of false 
positives, and Recall discovers the cost of false negatives. F1-score combines both precision 
and recall using the harmonic mean of them. 

4.3 Performance analysis  
In this subsection, we evaluate the proposed attention-based temporal network (ATN) on 
PDgait Dataset for Parkinson's disease detection and severity rating and analyze its 
classification performance. As shown in Table 2, PDgait dataset is made up of three 
subdatasets, and the subdataset Ga [28] and Ju [30] both involve four classes related to PD 
severity, and the subdataset Si [29] contain the first three severity levels within them. Because 
of the difference in their data composition, we separately conduct experiments on two datasets 
Ga and Si, and take both of them as a bigger dataset Ga-Si to verify the effectiveness of the 
proposed method. Their testing performances are shown in Fig. 5, in which Fig. 5 (a), (b), and 
(c) are the confusion matrixes of datasets Ga-Si, Si, and Ga, and the classification accuracy of 
their test sets respectively are 98.06 %, 98.90%, and 98.86%. The proposed method can 
achieve great recognition ability on these datasets. What’s more, an additional experiment is 
conducted on the dataset Ga without going through the preprocessing of normalization whose 
classification result is presented in Fig. 6 (d) with 97.61% accuracy, of which 99.30% for 
healthy controls, 96.72%, 94.53%, and 100% respectively for PD severity score 2, 2.5, and 3. 
Compared with that, the proposed ATN establishes better classification performance and has 
a more balanced discrimination capability in the face of PD patients with various severity 
levels and healthy individuals because of the raw data’s uneven distribution. 
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(a) Ga-Si (b) Si 

  
(c) Ga (d) Ga (no-norm) 

Fig. 6. Confusion matrixes of the classification results on PDgait dataset. 
 
 

Loss function plots in Fig. 7 illustrate the training process of classifier models on two 
subdatasets Si and Ga through the trends of their training loss and classification accuracy on 
the training and validation sets. The classification models involve the proposed ATN 
corresponding to Fig. 7 (a), (c) and the classifier consisting of its remaining modules without 
preprocessing matching Fig. 7 (b), (d), and they are set with the same hyper-parameters and 
parameter initializer. The loss function plots highlight that the preprocessing module involving 
normalization and standardization techniques scales data and reduces the data distribution 
difference between the training set and validation set, which can alleviate overfitting issue and 
accelerate the model convergence to a certain extent. 
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(a) Si (b) Si (no-norm) 

  
(c) Ga (d) Ga (no-norm) 

Fig. 7. Loss function plots of model training on PDgait dataset. 
 

Table 3. Performance of the proposed compared with existing methods 
Method Classification Acc(%) Precision(%) Recall(%) F1 (%) 
SVM [18] Two class 92.68 92.22 96.14 94.14 
RF [8] Two class 90.90 88.40 85.36 86.87 
RNN Multi-class 91.01 91.08 91.01 91.00 
LSTM [24] Two class 83.90 84.90 88.74 86.78 
Dual_channel LSTM [6] Multi-class 94.51 94.59 94.80 94.60 
GRU Multi-class 97.75 97.74 97.75 97.70 
Bi-GRU Multi-class 97.86 97.86 97.86 97.90 
CNN [26] Multi-class 96.34 96.34 96.34 96.31 
Proposed (Transformer) Multi-class 98.86 98.87 98.86 98.90 

 
In addition, we further compared our proposed method with several previous approaches 

by conducting short experiments on the same dataset Ga, a small dataset in PDgait dataset, i.e., 
SVM, RF, RNN, LSTM, GRU, Bi-GRU and CNN models according to performance metrics 
introduced in Sec. 4.2, including binary classification and multi-classification. The 
quantitative metrics are presented in Table 3. Ref. [18], [8], [24] processed the labels of PDgait 
data as two classes to distinguish healthy individuals and PD patients. Remaining approaches 
respectively utilized RNN family variants and CNN network to perform multi-classification 
among patients with varying severity levels of Parkinson's disease coupled with healthy 
controls. Deep neural networks are better suitable for time series data processing than 
traditional classification methods. LSTM and GRU methods have greater ability to handle long 
sequence data benefiting from the design of memory gating units, and their performance is 
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significantly improved over RNN. Bi-GRU adopts a bidirectional structure to learn the change 
features of the forward and backward directions improved from the original GRU network. 
Our proposed method reveals better classification ability against them. The promising results 
illustrated the ability of the attention mechanism from the Transformer Network in dealing 
with sequential data and excavating global temporal dependencies. 

In our experiments, we demonstrated that deep learning algorithms seem to particularly 
suit disease feature discovery and their applications in similar fields have been explored, such 
as hand movements and speech. On the basis of the survey, most studies focus on PD diagnosis 
according to single-modal motor data which is easily accessible, and only a few pay attention 
to the study of the combination of multi-modal motor or no-motor data with the limitations of 
the data source. These researches require the support of equipment for monitoring and 
collecting patients' clinical symptoms and signs with severity labels. We will carry out data 
collection from PD patients' daily lives and fuse multi-modal data for PD diagnosis and 
severity rating. 

5. Conclusion 
In this paper, we reported our research on predicting the severity of Parkinson's disease using 
an attention-based temporal network (ATN) with gait pressure data. We proposed ATN. The 
proposed method can effectively capture gait features from sequential signals and assess the 
severity of Parkinson's disease. Faced with gait signals from PD patients and healthy 
individuals, the attention mechanism of the Transformer can deal with variable length 
sequences more flexibly than one-dimensional convolution operation and has the ability to 
cope with variable length sequences with higher computational efficiency in comparison with 
recurrent structural networks. The model was evaluated and the best classification results were 
calculated.  

Since the difficulty and great challenges in the PD diagnosis and severity evaluation are 
from its complex etiology and diverse symptoms, the current work has certain limitations 
because of its design only with the ability to process single-mode gait data. In the further, a 
large set of multi-modal data will be valid for more comprehensive and reliable information 
analysis relevant to Parkinson's disease. With these data, we will employ a variety of motion 
and non-motion features, involving lower limb movements, upper limb movements, and vocal 
cord ability to combine multi-feature and carry out comprehensive auxiliary diagnosis. 
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