• Title/Summary/Keyword: Gait Analysis System

Search Result 317, Processing Time 0.022 seconds

A non-merging data analysis method to localize brain source for gait-related EEG (보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법)

  • Song, Minsu;Jung, Jiuk;Jee, In-Hyeog;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.679-688
    • /
    • 2021
  • Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

Development of a Novel Step Detection Algorithm for Gait Evaluation of Patients with Hemiplegia Based on Trunk Accelerometer (뇌졸중으로 인한 편마비 환자의 보행평가를 위한 체중심 가속도센서 기반의 새로운 보 검출 알고리즘 개발)

  • Lee, Hyo-Ki;Hwang, Sung-Jae;Cho, Sung-Pil;Lee, Dong-Ryul;You, Sung-Hyun;Lee, Kyoung-Joung;Kim, Young-Ho;Chung, Ha-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • In this study, we have developed a novel step detection algorithm for gait evaluation of patients with hemiplegia based on trunk accelerometry device. For this, we have used a bandpass filter and a least square acceleration (LSA) filter which is characterized by emphasizing the peak or valley point of the acceleration signals for each 3-axis accelerometer signals. To evaluate the algorithm, the detected steps by developed algorithm and real steps by the motion analysis system were compared. As a result, we could obtain the sensitivity of 96.44%, the specificity of 99.94% and the accuracy of 99.90% for the patients' data sets and the sensitivity of 100%, the specificity of 99.93% and the accuracy of 99.93% for the normal data sets. In conclusion, the developed algorithm is useful for the step detection for patients with hemiplegia as well as normal subjects.

The Effect of Hinged Ankle-Foot Orthosis on Walking Function in Children With Spastic Diplegic Cerebral Palsy: A Cross-Sectional Pilot Study

  • Kang, Jeong-Hyeon;Kim, Chang-Yong;Ohn, Jin-Moo;Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • Purpose: The aim of the current study was to examine the effects of hinged ankle-foot orthosis (HAFO) on walking function in children with spastic diplegic cerebral palsy (CP). Methods: Thirty-two children (mean age: $6.79{\pm}0.35years$, age range: 5-7 years) who were diagnosed with spastic diplegic cerebral palsy participated in the study. Each subject typically walked through 10 meters of a gait platform with markers on the subject's proper body segments and underwent 3-D motion analysis system with and without hinged ankle-foot orthosis. The HAFOs were all custom-made for individual CP children and had plantarflexion stop at $0^{\circ}C$ with no dorsiflexion stop. The interventions were conducted over three trials in each group, and measurements were performed on each subject by one examiner in three trials. 3-D motion analysis system was used to measure gait parameters such as walking velocity, cadence, step-length, step-width, stride-length, and double support period in two conditions. Results: The walking velocity, cadence, step-length, and stride-length were significantly greater for the HAFO condition as compared to the no HAFO condition (p<0.05). However, no significant difference in step-width and double support period was observed between two conditions. Conclusion: These findings suggest that using the HAFO during walking would suggest positive evidence for improving the spatiotemporal parameters of gait in children with spastic diplegic cerebral palsy.

A New Experimental Error Reduction Method for Three-Dimensional Human Motion Analysis

  • Mun, Joung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.459-468
    • /
    • 2001
  • The Average Coordinate Referenee System (ACRS) method is developed to reduce experimental errors in human locomotion analysis. Experimentally measured kinematic data is used to conduct analysis in human modeling, and the model accuracy is directly related to the accuracy of the data. However. the accuracy is questionable due to skin movement. deformation of skeletal structure while in motion and limitations of commercial motion analysis system . In this study. the ACRS method is applied to an optically-tracked segment marker system. although it can be applied to many of the others as well. In the ACRS method, each marker can be treated independently. as the origin of a local coordinate system for its body segment. Errors, inherent in the experimental process. result in different values for the recovered Euler angles at each origin. By employing knowledge of an initial, calibrated segment reference frame, the Euler angles at each marker location can be averaged. minimizing the effect of the skin extension and rotation. Using the developed ACRS methodology the error is reduced when compared to the general Euler angle method commonly applied in motion analysis. If there is no error exist in the experimental gait data. the separation and Penetration distance of the femoraltibial joint using absolute coordinate system is supposed to be zero during one gait cycle. The separation and Penetration distance was ranged up to 18 mm using general Euler angle method and 12 mm using the developed ACRS.

  • PDF

A Biomechanical Analysis According to Passage of Rehabilitation Training Program of ACL Patients (전방십자인대 수술자의 재활트레이닝 경과에 따른 운동역학적 분석)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.235-243
    • /
    • 2013
  • The purpose of this study was to analyse scientific according to period of rehabilitation training of ACL patients. ACL patients seven subjects participated in this study. Gait (1.58 m/sec) analysis was performed by using a 3-D Cinematography, a Zebris system and a electromyograph system. The data were analyzed by paired t-test. The joint angles were recorded from the ankle, knee, hip joints. Peak max dorsi-flexion and peak max plantar-flexion identified significant differences (p<0.05). Another angles were no significant difference. Vertical force (Fz) and max pressure variables improved 6 month RTP better than 3 month RTP. EMG were collected from 4 muscles (rectus femoris, biceps femoris, gastrocnemius, tibialis anterior) with surface electrides in gait system. EMG signals were rectified and smoothed data. EMG signas were no significant difference but they also improved 6 month RTP better than 3 month RTP. More research is necessary to determine exactly what constitutes optimal rehabilitation training period for ACL patients.

The Analysis of Muscle Activities on the Lower Limb during Wearing Functional Insole (다기능성 인솔 착용 시 하지의 근활성도 분석)

  • Park, Jae-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • The purpose of this study was to analyze muscle activities on functional insole with diet effect. Originally, ten healthy female subjects with an average age of 23.2 year(S.D=1.1), weight of 49.7 kg(S.D=4.9), height of 163.2 cm(S.D=3.5) and a shoe size of 237.5 cm(S.D=4.9) were participated in this experiment. Ten healthy females walked on a treadmill(speed=about 4.2 km/h) wearing two different insole types. Muscle activities data was collected using the EMG operating system. The surface EMG signal for tibialis anterior(TA), gastrocnemius(GA), vatus lateralis(VL) and biceps femoris(BF) were acquired at the RMS(10 Hz, 350 Hz) using Noraxon Telemyo DTS system(Noraxon inc, USA). This study processed the data using the Windows SPSS ver.17.0 to get an independent t-test, with the setting, p<.05. Analysis of muscle activity were measured and calculated during walking. The results are as follow: Functional insole wearing were increased muscle activities significantly from Tibialis anterior(TA) during total gait cycle. Normal distribution was demonstrated in total step of stances period. One foot standing position showed decreased muscle activity. Two foot standing position was demonstrated with gastrocnemius and biceps femoris. As a result of the analysis, Functional insole will inerease the diet effect in the use of four muscle groups.

Development of Fall Inducement System based on Pedestrian Biological Data for Fall Reproduction (낙상 재현을 위한 보행자 생체 정보 기반의 낙상 유도 시스템 개발)

  • Lee, Jong-il;Han, Jong-Boo;Koo, Jae Wan;Lee, Seokjae;Sohn, Dong-Seop;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2020
  • This paper is about a fall inducement system for guiding like a real fall. Reliable fall data can be used as an essential element in developing effective fall protection devices. We can get this data if the induced fall is very realistic. The proposed system analyzes gait characteristics and determines when to fall based on the pedestrian's biometric data. To estimate the fall inducement time, an active estimation algorithm was proposed using different biometric values for each pedestrian. The proposed algorithm is designed to response actively to the ratio of gait cycle and a stance period. To verify this system, an experimental environment was implemented using a multi-rail treadmill equipped with a ground reaction force measurement device. An experiment was conducted to induce falls to pedestrians using a fall inducement system. By comparing the experimental scene to the video of the actual fall, it has been confirmed that the proposed system can induce a reliable fall.

Immediate effects of single-leg stance exercise on dynamic balance, weight bearing and gait cycle in stroke patients

  • Jung, Ji-Hye;Ko, Si-Eun;Lee, Seung-Won
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Objective: This study aimed to identify how various applications of weight bearing on the affected side of hemiplegia patients affect the ability of balance keeping of the affected leg and the gait parameters. Design: Cross-sectional study. Methods: Eighteen patients with hemiplegia participated in this study. There were twelve males and six females. This study investigated the effects of the single-leg stance exercise on dynamic balance, weight bearing, and gait ability compared with four conditions. Dynamic balance and weight bearing were measured using the step test (ST) of the affected side in stroke patients. In addition, gait parameters were measured using the optogait system for analysis of the spatial and temporal parameters of walking in stroke patients. Results: This study investigated the effect of the single leg stance exercise on the paralysis side. The ST showed significant findings for all conditions (p<0.05). Therefore, knee extension and flexion exercise on the affected side single-leg stance (condition 4) significantly improved dynamic balance and weight bearing on the affected side (p<0.05). In the condition of moving the knee joint in a single-leg stance was discovered that the stance phase time significantly increased more than in the condition of supporting the maximal voluntary weight on the affected side (p<0.05). Conclusions: Single-leg stance on the paralysis side with knee flexion and extension increased symmetry in weight bearing during stance phase time. This study suggests that single-leg stance exercises augments improved gait function through sufficient weight bearing in the stance phase of the affected side.

A Study of the Differences in Subjective Visual Vertical Between the Elderly and Young Adults and Balance, Dizziness, and Gait Changes (노인과 젊은 성인의 주관적 시수직의 차이와 그에 따른 균형, 어지럼증 및 보행 변화 연구)

  • Kwon, Jung-Won;Yeo, Sang-Seok
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.383-392
    • /
    • 2020
  • Purpose: Balance and gait dysfunction caused by aging affect elderly individuals' independent life, which, in turn, can reduce their overall quality of life. The purpose of this study is to compare the differences in the vestibular function of healthy elderly and young adults based on the subjective visual vertical (SVV) test as well as to compare and analyze the gait ability between these two groups to study the differences and association between vestibular, dizziness, and balance ability. Methods: The subjects were 18 young and 16 elderly adults with no neurological or musculoskeletal damage. To evaluate vestibular function, a subjective visual vertical test was performed. To evaluate the gait function, the step time, step length, stride length, stance phase ratio, and swing phase ratio were measured. Balance was evaluated using the Berg Balance Scale (BBS), and dizziness was evaluated using a dizziness handicap inventory (DHI). Results: There were significant differences in the SVV, BBS, and DHI between the young and elderly adults (p < 0.05). The gait variables of the older adults were all significantly different (except for the swing phase ratio) than those of the young adults (p < 0.05). As the result of correlation analysis, the SVV values of the young adults showed a significant negative correlation with step length and stride length (p < 0.05), while the SVV values of the elderly adults only showed a significant positive correlation with the DHI (p < 0.05). Conclusion: The elderly appeared to show a decrease in vestibular function when compared to the young adults, and it is thought that walking and balance function declined, while dizziness increased. Moreover, it is believed that these results can be used as basic data for vestibular rehabilitation in the future.

Computation of Ground Reaction Forces During Gait using Kinematic Data (보행의 운동학적 데이터를 이용한 지면반발력 계산)

  • Song, Sung-Jae;Kim, Sei-Yoon;Kim, Young-Tae;Lee, Sang-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • The purpose of this study is to compute the ground reaction forces during gait in the absence of force plates. The difficulties in using force plates for hemiparetic patients inspired us to initiate this study. Level-walking experiments were performed using a three-dimensional motion analysis system with synchronized force plates. Kinematic data were obtained from the three-dimensional trajectories of reflective markers. Gait events were also detected from the kinematic data. The human body was modeled as 13 rigid segments. The mass and the center of mass of each segment were determined from anthropometric data. Vertical ground-reaction forces obtained from the kinematic data were in good agreement with those obtained using the force plate. The computed and measured values of anterior and lateral ground reaction showed similar tendencies. The computation results can be used as the basic data for inverse dynamic analysis.