• Title/Summary/Keyword: Gait

Search Result 2,426, Processing Time 0.031 seconds

Effects of Treadmill Gait Training Combined with Muscle Tone Control Technique on Gait Ability in Patient with Chronic Stroke (근긴장도 조절기법을 병행한 트레드밀 보행훈련이 만성 뇌졸중 환자의 보행능력에 미치는 영향)

  • Dong-Hoon Kim;Kyung-Hun Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.147-157
    • /
    • 2023
  • Purpose : Stroke patients exhibit considerable variations in gait patterns. Stroke patients generally show abnormal muscle tone and gait. This study was performed to evaluate the effects of treadmill gait training combined with muscle tone control technique (TM) on gait ability in patient with chronic stroke. Methods : A single-blind, randomized controlled trial was conducted with 36 patient with chronic stroke. They were randomly allocated 2 groups; treadmill gait training combined with muscle tone control technique group (TM group; n=18) and conservative treatment group (CG group; n=18). The TM group received 15 minutes muscle tone control technique and 15 minute treadmill gait training. In the conservative treatment group received 30 minutes conservative physical therapy. Each group performed 30 minutes a day 3 times a week for 8 weeks. The primary outcome gait ability were measured by gait measurement system (Optogait, Microgate, Italy) and 10 m walking test (10MWT). An independent t-test was used to statistically analyze the pre-test and pos-ttest gait ability results. Results : Both groups demonstrated significant improvement of outcome in gait ability during intervention period. TM group showed significant differences in gait ability as compared to the CG groups (p<.05). TM group showed significant differences in 10MWT as compared to the CG groups (p<.05). Our results showed that TM was more effective on gait ability in patients with chronic stroke. Conclusion : Our findings of this study confirmed that the treadmill gait training combined with muscle tone control technique provided significant improvements on gait ability in patient with chronic stroke. Therefore treadmill gait training combined with muscle tone control technique may positive influenced gait ability. This study will be able to be used as an intervention data for recovering gait ability in patients with chronic stroke.

Development of a Gait Diagnosis Supporting System using Korean Normal Gait Data (한국 성인의 정상 보행데이터를 이용한 보행진단 지원 시스템의 개발)

  • Kim, Dongjin;Ryu, Taebeum;Kwon, Seman;Choi, Hwa Soon;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.480-486
    • /
    • 2007
  • A gait diagnosis supporting system is necessary to evaluate the characteristics of abnormal gait of a patient in a systematic and efficient manner. The present study developed a gait diagnosis supporting system which compares abnormal gait of a patient with a reference gait data and presents abnormal gait characteristics in an organized form. Three types of diagnosis modules were developed for the spatio-temporal, kinematic and kinetic gait parameters, and a gait data for Korean normal adults was used for the reference data of the system. The system was applied to evaluate the gait pattern of three arthritis patients and the abnormal gait characteristics of them could be easily identified with a systematic and graphical presentation.

The Effects of Insoles for Postural Correction on Spatial-temporal Changes of Gait in Spastic Cerebral Palsy Children

  • Kim, Hee Tak;Lim, Sang Wan
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.840-845
    • /
    • 2015
  • Improvement in functional gait is one of treatment goals in treatment of cerebral palsy children. This study intended to examine the effects of insoles for postural correction on gait in spastic cerebral palsy patients by investigating changes in gait temporal spatial parameters. As the subjects, 15 spastic bilateral cerebral palsy patients participated in this study. Temporal spatial parameters of gait were measured using GAITRite system under three gait conditions. Bare foot gait, gait in shoes, and gait in insoles for postural correction were conducted. In order to look at differences in temporal spatial parameters according to three gait conditions, repeated one way analysis of variance was conducted. As post hoc test, Bonferroni was conducted. A significant level was set at ${\alpha}=.05$. According to the result of this study, gait velocity, cadence, step length, stride length of the left lower extremity significantly changed. When the subjects put on customized insoles for postural correction, the effect was greatest. There were no significant changes in stance time, single support time, double support time, swing % of gait, and stance % of cycle. Therefore, gait with insoles for postural correction positively influenced functional gait improvement and will be able to be usefully employed for spastic cerebral palsy children as one of gait assistance devices.

A Study on Gait Imbalance Evaluation System based on Two-axis Angle using Encoder (인코더를 이용한 2축 각도 기반 보행 불균형 평가 시스템 연구)

  • Shim, Hyeon-min;Kim, Yoohyun;Cho, Woo-Hyeong;Kwon, Jangwoo;Lee, Sangmin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.401-406
    • /
    • 2015
  • In this study, the gait imbalance evaluation algorithm based on two axes angle using encoder is proposed. This experiment was carried out to experiment with a healthy adult male to 10 people. The device is attached to the hip and knee joint in order to measure the angle during the gait. Normal and imbalance gait angle data were measured using an encoder attached to the hip and knee joints. Also, in order to verify the reliability of estimation of asymmetrical gait using hip and knee angle, it was compared with the result of asymmetrical gait estimation using foot pressure. SI (Symmetry Index) was used as an index for determining the gait imbalance. As a result, normal gait and 1.5cm imbalance gait were evaluation as normal gait through SI using an encoder. And imbalance gait of 3cm, 4cm, and 6cm were judge by imbalance gait. Whereas all gait experiments except normal gait were evaluation as imbalance gait through SI using the pressure. It was possible to determine both the normal gait and imbalance gait through measurement for the angle and the pressure.

Fabrication of shoes for analyzing human gait pattern using strain sensors (스트레인센서를 이용한 걸음걸이 패턴 분석 신발제작)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1407-1412
    • /
    • 2013
  • The human gait pattern analysis shoes have been developed for our healthy lfe, which is largely dependent on a posture and a skeletal structure affected by daily lifestyle and gait pattern. There are generally 3 types of human gait, such as normal gait, intoeing gait, and outtoeing gait. We have analyzed one's gait pattern through walking put on the developed shoes.

Turning Gait Planning of a Quadruped Walking Robot with an Articulated Spine

  • Park, Se-Hoon;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1926-1930
    • /
    • 2004
  • We suggest a turning gait planning of a quadruped walking robot with an articulated spine. Robot developer has tried to implement a gait more similar to that of natural animals with high stability margin. Therefore, so many types of walking robot with reasonable gait have been developed. But there is a big difference with a natural animal walking motion. A key point is the fact that natural animals use their waist-oint(articulated spine) to walk. For example, a crocodile which has short legs relative to a long body uses their waist to walk more quickly and to turn more effectively. The other animals such as tiger, dog and so forth, also use their waist. Therefore, this paper proposes discontinuous turning gait planning for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. Turning gait is very important as same as straight gait. All animals need a turning gait to avoid obstacle or to change walking direction. Turning gait has mainly two types of gaits; circular gait and spinning gait. We apply articulated spine to above two gaits, which shows the majority of an articulated spine more effectively. Firstly, we describe a kinematic relation of a waist-joint, the hip, and the center of gravity of body, and then apply a spinning gait. Next, we apply a waist-joint to a circular gait. We compare a gait stability margin with that of a conventional single rigid body walking robot. Finally, we show the validity of a proposed gait with simulation.

  • PDF

Case Study of the Immediate Gait Improvement in a Post-Stroke Gait Disturbance Patient Equipped with a Weighted Vest (중량조끼를 착용한 뇌졸중으로 인한 보행장애 환자의 즉각적인 보행 개선 효과 1례)

  • Kim, Cheol-hyun;Hong, Hae-jin;Lee, Sang-kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.5
    • /
    • pp.763-769
    • /
    • 2016
  • Objective: To confirm the immediate gait improvement in a post-stroke gait disturbance patient equipped with a weighted vest. Methods: We selected a patient who was able to walk without another’s help or with tools. The selected patient had an unstable gait because she had only started an independent gait within the past week, so we thought that a weighted vest could be very helpful for her. We first collected gait parameters using a treadmill gait analysis system while the patient walked on the treadmill without the weighted vest. After a 10-minute break, gait parameters were collected again while the patient walked on the treadmill while wearing the weighted vest. The gait parameters we collected included step length (cm), stance phase (%), swing phase (%), SW/ST, and gait line length (mm). For objective evaluation of gait improvement, we calculated the ratio of gait parameters of the right and left limbs. Results: The gait of the post-stroke patient was more symmetrical when wearing the weighted vest than without the weighted vest. Without the weighted vest, her step length ratio was 0.78, stance phase ratio was 0.88, swing phase ratio was 1.50, SW/ST ratio was 1.70, and gait line length ratio was 0.91. With the weighted vest, her step length ratio was 0.88, stance phase ratio was 0.90, swing phase ratio was 1.38, SW/ST ratio was 1.54, and gait line length ratio was 0.98. No side effects were observed due to the weighted vest.

Characteristics for Gait of the Induced Equinus in Normal Subjects (정상인에서 유도된 첨족에 따른 신체 보행의 특성)

  • Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.435-443
    • /
    • 2014
  • The purposes of this study was to investigate the physical compensation for gait on induced equinus in normal subjects. Ten subjects were participate in the experiment (age: $23.8{\pm}2.8yrs$, height: $177.3{\pm}4.3cm$, weight: $70.8{\pm}4.6kg$). The study method adopted 3D analysis with six cameras and ground reaction force with two force-plate. Induced equinus were classify as gait pattern on unilateral and bilateral equinus. The results were as follows; In displacement of COM, medio-lateral and anterior-posterior COM were no significant, but in vertical COM, unilateral equinus gait was higher than bilateral equinus gait. In displacement hip joint, left hip joint was more extended in FC1 and FC2 during unilateral equinus gait. In displacement knee joint, left knee joint was more extended in FC2, right knee joint was more extended in all event during unilateral equinus gait. In trunk tilt, unilateral equinus gait was more forward tilt in TO1 and TO2. ROM of each joint was no significant. In Displacement of pelvic tilt angle, X axis of unilateral equinus gait was more increase than bilateral equinus gait at FC2, TO2 and MS2. Y axis of unilateral equinus gait was more increase than bilateral equinus gait at MS1, FC2 and MS2. Z axis was no significant in both equinus gait. In GRF, right Fx and Fy were no significant in both equinus gait, Fz was more bigger vertical force in bilateral equinus gait. Left Fx was more bigger internal force in unilateral equinus gait, Fy and Fz were no significant in both equinus gait.

Gait Training Strategy Focusing on Perceptual Learning for Improved Gait Capacity in Stroke Survivors

  • Jung, Jee Woon
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.283-289
    • /
    • 2020
  • Objective: The purpose of this study was to determine the force of lower extremities, the change in walking ability on the ground by applying a walking training program based on perceptual learning to improve gait capacity of chronic stroke patients. Method: This study included Twenty-four patients with chronic stroke. Using a perceptual-based gait training, the experimental group trained twice a day for 30 minutes each time, 5 times a week, for a total of 8 weeks. The control group underwent ground gait training that excluded the element of a perceptual training for 30 minutes, 5 times a week for 8 weeks. Results: In the two groups, the maximum forefoot pressure after intervention was significantly different in both the LEPGT and GGT (p<0.05). The maximum midfoot pressure was significantly different in LEPGT (p<0.05). There was a significant difference in the maximum heel pressure after intervention between the two groups (p<0.05). As a result of comparing the change in step length and stride length after intervention in the two groups, there was a significant difference between the two groups (p<0.05). Conclusion: Both gait training programs was found that gait training based on perceptual learning and ground gait training were the training for improving the functional gait of stroke patient. Perceptual learning gait training utilizing intensive perceptual awareness was the training for improving gait capacity within the period than ground gait training.

Preliminary Study of Ambulation Training on Electromechanical Gait Trainer in Stroke Patients (전동식 보행 훈련기를 이용한 뇌졸중 환자 보행훈련의 사전연구)

  • Kim, Jae-Hyun;An, Seung-Huon;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of electromechanical gait trainer therapy in stroke patients. The gait trainer was designed to provide nonambulatory subjects the repetitive practice of a gait-like movement without overstraining therapist. To simulate normal gait, discrete stance and swing phase, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. Methods : This preliminary study investigated during 8 weeks therapy on the gait trainer could improve gait ability in 5 subacute and chronic hemiparetic stroke patients. Gait ability(time up & go [TUG], comfortable and maximal gait speed and functional ambulation category[FAC]), functional movement of lower extremity(Fugl-Meyer Assessment [FMA] and composite spasticity score [CSS]) and sensory of lower extremity(Fugl-Meyer Assessment sensory [FMA-s])were the measured. Results : TUG, comfortable and maximal gait speed and FMA were improved significantly. Although FAC, FMA-s and CSS were improved, there were not statistically significant. Conclusion : Therefore, the gait trainer enabled affected patients the repetitive practice of a gait-like movement, which is important for the restoration of walking ability.

  • PDF