• Title/Summary/Keyword: Gain correction

Search Result 159, Processing Time 0.045 seconds

CCD Signal Processing for Optimal Non-Uniformity Correction

  • Kong, Jong-Pil;Lee, Song-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.645-652
    • /
    • 2010
  • The performance of the payload Electro-Optical System (EOS) in satellite system is affected by various factors, such as optics design, camera electronics design, and the characteristics of the CCD (Charge Coupled Device) used, etc. Of these factors, the camera electronics design is somewhat unique in that its operational parameters can be adjusted even after the satellite launch. In this paper, the effect of video gain on the non-uniformity correction performance is addressed. And a new optimal non-uniformity correction scheme is proposed and analyzed using the data from real camera electronics unit based on a TDI (Time Delayed Integration) type of CCD. The test results show that the performance of the conventional non-uniformity correction scheme is affected significantly when the video gain is added. On the other hand, in our proposed scheme, the performance is not dependent on the video gain. The insensitivity of the non-uniformity performance on the video-gain is mainly due to the fact that the correction is performed after the dark signal is subtracted from system response.

Current-Steered Active Balun with Phase Correction

  • Park, Ji An;Jin, Ho Jeong;Cho, Choon Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.629-633
    • /
    • 2015
  • An active balun using current steering for phase correction is presented. The proposed active balun is constructed with two different unit balun structures based on current steering to reduce phase and amplitude errors. This type of topology can be compared with the conventional phase and amplitude correction techniques which do not incorporate the current steering. Designed and fabricated active balun in $0.18{\mu}m$ CMOS process operates over 0.95 - 1.45 GHz band, showing input reflection coefficient under -15 dB, phase error of $11^{\circ}$ and gain error of 0.5 dB. Gain is measured to be 0.3 dB maximum and power consumption of 7.2 mW is measured.

A New Expression of Near-Field Gain Correction Using Photonic Sensor and Planar Near-Field Measurements

  • Hirose, Masanobu;Kurokawa, Satoru
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 2012
  • We propose a new expression of the near-field gain correction to calculate the on-axis far-field gain from the onaxis near-field gain for a directive antenna. The new expression is represented by transversal vectorial transmitting characteristics of two antennas that are measured by planar near-field equipment. Due to the advantages of the photonic sensor, the utilization of the new expression realizes the measurements of the on-axis far-field gains for two kinds of double ridged waveguide horn antennas within 0.1 dB deviation from 1 GHz to 6 GHz without calibrating the photonic sensor system.

The Digital Controller of the Single-Phas Power Factor Correction(PFC) having the Variable Gain (가변 이득을 가지는 단상 PFC 디지털 제어기)

  • 정창용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.163-167
    • /
    • 2000
  • This paper presents the digital control of single-phase power factor correction(PFC) converter which has the variable gain according to the condition of inner control loop error. Generally the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This has a bad influence on the power factor because current loop doesn't operate smoothly in the condition that input voltage is low In particular a digital controller has more time delay than an analog controller and degrades This drops the phase margin of the total digital PFC system,. It causes the problem that the gain of current control loop isn't increased enough. In addition the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult The digital PFC controller presented in this paper has a variable gain of current control loop according to input voltage. The 1kW converter was used to verify the efficiency of the digital PFC controller.

  • PDF

Nonuniform Gain Correction Based on the Filtered Gain Map in Radiography Image Detectors (방사선 영상 디텍터에서 필터링된 이득지도를 사용한 불균일 이득 잡음의 보정)

  • Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.97-105
    • /
    • 2016
  • Radiography image detector produces digital images by collecting the charges from the incident x-ray photons and converting it to the voltage signals and then the digital signals. The fixed-pattern noise from the nonuinform amplifier gains in the employed multiple readout circuits. In order to correct the nonuniform gains, a gain-correction technique which is based on the gain map is conventionally used. Since the photon noise remains in the designed gain map, the noise contaminates the gain-corrected images. In this paper, experimental observations are conducted for filtering the remained noise in the gain map, and a filter optimization algorithm is proposed to efficiently remove the noise. For acquired x-ray images from detectors, the filtered gain maps are evaluated and it is shown that optimization algorithm can improve the filtering performance even for relatively strong fixed-pattern noises, which cannot be removed by a simple filter.

CCD Pixel Correction Table Generation for MSC

  • Kim Young Sun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • Not all CCD pixels generate uniform value for the uniform radiance due to the different process of manufacture and each pixel characteristics. And the image data compression is essential in the real time image transmission because of the high line rate and the limited RF bandwidth. This pixel's nonuniformity and the loss compression make CCD pixel correction necessary in on-orbit condition. In the MSC system, the NUC unit, which is a part of MSC PMU, is charge of the correction for CCD each pixel. The correction is performed with the gain and the offset table for the each pixel and the each TDI mode. These correction tables are generated and programmed in the PMU Flash memory through the various image data tests at the ground test. Besides, they can be uploaded from ground station after onorbit calibration. This paper describes the principle of the table generation and the test way of the non-uniformity after NUC

  • PDF

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF