• Title/Summary/Keyword: Gain Equalizer

Search Result 43, Processing Time 0.019 seconds

Mixed $H_2/H_{\infty}$ Output Feedback Controller Design for PLL Loop Filter with Uncertainties and Time-delay (시간지연과 불확실성을 가지는 위상동기루프의 루프필터에 대한 혼합 $H_2/H_{\infty}$ 출력궤환 제어기 설계)

  • 이경호;한정엽;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2589-2592
    • /
    • 2003
  • In this paper, a robust mixed H$_2$/H$\_$$\infty$/ output feedback control method is applied to the design of loop filter for PLL carrier phase tracking. The proposed method successfully copes with large S-curve slope uncertainty and a significant decision delay in the closed-loop that may exist In modern receivers due to a convolutional decoder or an equalizer. The objective is to design an output feedback controller which minimizes the H$_2$performance while satisfying the H$\_$$\infty$/ performance to guarantee the gain margin and phase margin for linear time invariant(LTI) polytopic uncertain systems. LMIs based approach is given to solve this problem. We can verify the H$\_$$\infty$/ performance satisfaction and minimize the phase detector error through the simulation result.

  • PDF

Differencing Multiuser Detection Using Error Feedback Filter for MIMO DS-UWB System in Nakagami Fading Channel

  • Kong, Zhengmin;Fang, Yanjun;Zhang, Yuxuan;Peng, Shixin;Zhu, Guangxi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2601-2619
    • /
    • 2012
  • A differencing multiuser detection (MUD) method is proposed for multiple-input multiple-output (MIMO) direct sequence (DS) ultra-wideband (UWB) system to cope with the multiple access interference (MAI) and the computational efficiency in Nakagami fading channel. The method, which combines a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter (MIC DFE-EFF), a coefficient optimization algorithm (COA) and a differencing algorithm (DA), is termed as MIC DFE-EFF (COA) with DA for short. In the paper, the proposed MUD method is illuminated from the rudimental MIC DFE-EFF to the advanced MIC DFE-EFF (COA) with DA step by step. Firstly, the MIC DFE-EFF system performance is analyzed by minimum mean square error criterion. Secondly, the COA is investigated for optimization of each filter coefficient. Finally, the DA is introduced to reduce the computational complexity while sacrificing little performance. Simulations show a significant performance gain can be achieved by using the MIC DFE-EFF (COA) with DA detector. The proposed MIC DFE-EFF (COA) with DA improves both bit error rate performance and computational efficiency relative to DFE, DFE-EFF, parallel interference cancellation (PIC), MIC DFE-EFF and MIC DFE-EFF with DA, though it sacrifices little system performance, compared with MIC DFE-EFF (COA) without DA.

The Performance Improvement Method using Decision Feedback Channel Estimation Scheme in PB/MC-CDMA System (PB/MC-CDMA 시스템에서 결정 귀한 채널 추정 기법을 이용한 성능 향상 방법)

  • Lee, Kyujin;Kim, Guijung
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.329-335
    • /
    • 2014
  • In this paper, to improve the performance of PB/MC-CDMA system, we have researched about the decision feedback channel estimation method using the pilot symbol with data symbol. The PB/MC-CDMA system is able to obtain the improved BER by frequency diversity gain and frequency domain equalizer in the frequency selective fading channel. However, when it is not the estimating of channel exactly, it is degrading the performance of BER in the system for occurred the interference among users. To improve the performane system in the multi-user environment the proposed system is using the decision feedback to estimate channel using the channel estimated value of the first stage and second stage. The proposed system is evaluated by computer simulation. The proposed system is not only able to improve the performance of BER by decreasing the interference to each user, but also the proposed system is possible to reduce number of pilot symbol to estimate the channel. Therefore, it confirmed the proposed system improves the performance than the conventional system.

Performance Analysis of Spread Spectrum Underwater Communication Method Based on Multiband (다중 밴드 기반 대역 확산 수중통신 기법 성능분석)

  • Shin, Ji-Eun;Jeong, Hyun-Woo;Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2020
  • Covertness and performance are very important design goals in the underwater communications. To satisfy both of them, we proposed efficient underwater communication model which combined multiband and direct sequence spread spectrum method in order to improve performance and covertness simultaneously. Turbo coding method with 1/3 coding rates is used for channel coding algorithm, and turbo equalization method which iterately exchange probabilistic information between equalizer and decoder is used for receiver side. After optimal threshold value was set in Rake processing, this paper analyzed the performance by varying the number of chips were 8, 16, 32 and the number of bands were from 1 to 4. Through the simulation results, we confirmed that the performance improvement was obtained by increasing the number of bands and chips. 2~3 dB of performance gain was obtained when the number of chips were increased in same number of bands.

Beam Diversity Receiver Using 7-Element ESPAR Antenna (전자 빔 조향 기생 배열 안테나를 사용한 빔 다이버시티 수신기)

  • An, Changyoung;Lee, Seung Hwan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, we propose receiver using ESPAR antenna for diversity gain. The proposed receiver receive signal by changing direction of beam pattern alternately in the OFDM symbol time period when DoA is estimated. In this way, the proposed receiver obtains diversity gain. The proposed receiver has single RF chain. If beam direction is changed alternately then it causes spectrum spread. And then, ICI occur because of spectrum spread. This interference can be equalized at the frequency domain equalizer such as ZF, MMSE and ML. In simulation, the proposed system receive signal using beam pattern of $60^{\circ}$ and beam pattern of $120^{\circ}$ alternately in OFDM symbol time period when it is assumed that DoA is $60^{\circ}$ and $120^{\circ}$. The performance results confirm that it is possible that the proposed receiver obtains diversity gain.

Channel estimation scheme of terrestrial DTV transmission employing unique-word based SC-FDE (Unique-word 채용한 SC-FDE 기반 지상파 DTV 전송의 채널 추정 기법)

  • Shin, Dong-Chul;Kim, Jae-Kil;Ahn, Jae-Min
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.207-215
    • /
    • 2011
  • A signal passed through multi-path channel suffers ISI(Inter-Symbol Interference) and severe distortions caused by channel delay spread and noise components at the SC-FDE(Single Carrier with Frequency Domain Equalizer) transmission. Conventional UW(Unique-Word) based SC-FDE iterative channel estimation improves channel estimation performance by smoothing estimated CIR(Channel Impulse Response) of the noise components outside the channel length at time domain and restoring the broken cyclic property through UW reconstruction. In this paper, we propose channel estimation scheme through noise suppression within channel length. To suppress the noise, we estimate noise standard deviation as estimated CIR of the noise components outside the channel length and make criteria of the noise standard deviation gain that doesn't affect the original signal samples. When estimated CIR samples within channel length are less than the criteria value using the noise standard deviation and gain, the noise components are removed. Simulation results show that the proposed channel estimation scheme brings good channel MSE(Mean Square Error) and good BER(Bit Error Rate) performance.

Pre-Equalization Techniques for Mitigating Rain Attenuation Channels in a Broadband Fixed Wireless Uplink System

  • Lee, Yeon-Woo;Cho, Choon-Geun;Hur, Kyeong;Cho, Kwang-Moon;Alsusa, Emad
    • International Journal of Contents
    • /
    • v.2 no.4
    • /
    • pp.19-24
    • /
    • 2006
  • In this paper, the performance of pre-equalization technique which can be applicable for the B-WLL uplink is evaluated and compared to post-equalization technique under three kinds of rain attenuation channels such as rain, intermittent light rain and thundershower. The BER performance comparisons of two algorithms (LMS and RLS) are investigated in the context of channel models and the length of training sequence. From the simulation results, it is shown that the post-equalization outperforms only at quite good channel conditions such as AWGN, while the pre-equalization can guarantee better BER performance at every channel conditions, especially performance gain increases as the severity of channel increases. It is concluded that the pre-equalizer using LMS algorithm is preferable at delay-tolerant situation where the complexity of algorithm is not a strict factor, while one using RLS is suitable for fast burst transmission with a relatively short training sequence.

  • PDF

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.

A Study on Selection Criterions for Selection Diversity in WAVE Systems (WAVE 시스템에서 선택 다이버시티를 위한 선택 기준에 대한 연구)

  • Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, selection criterions on selection diversity are researched. The diversity is applied to the multiple antenna system based on wireless access in vehicular environment (WAVE) standard for rapid varying channel. Least squares (LS) based decision feedback equalizer (DFE) are used for channel equalization. Received signal is regenerated by means of the decision feedback path. In the selection diversity, the regenerated signal as well as the received signal is selected according to selection criterion. The decision feedback algorithm can follow the fast speed of WAVE fading channel. To control the tracking speed of the time-varying channel, simple low pass filter is used. Finally, the estimated channel value recovers the distorted payloads. Signal power before automatic gain control (AGC) in analog stage can be used as a selection criterion. In the digital stage, signal power after AGC, noise power after AGC, signal to noise ratio after AGC and cross-correlation method can be used as selection criterions. According to the simulation results, the performance of the selection diversity is improved in comparison with that of the combining diversity for the WAVE fading channel.

Implementation and test results of on-channel repeater for ATSC 3.0 systems

  • Ahn, Sungjun;Kwon, Sunhyoung;Kwon, Hae-Chan;Kim, Youngsu;Lee, Jaekwon;Shin, Yoo-Sang;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.715-732
    • /
    • 2022
  • Despite the successful launch of Advanced Television Systems Committee (ATSC) 3.0 broadcasting worldwide, broadcasters are facing obstacles in constructing void-less large-scale single-frequency networks (SFNs). The bottleneck is the absence of decent on-channel repeater (OCR) solutions necessary for SFNs. In the real world, OCRs suffer from the maleficent feedback interference (FI) problem, which overwhelms the desired input signal. Moreover, the undesired multipaths between studio-linked transmitters and the OCR deteriorate the forward signals' quality as well. These problems crucially restrict the feasibility of conventional OCR systems, arousing the strong need for cost-worthy advanced OCR solutions. This paper presents an ATSC 3.0-specific solution of advanced OCR that solves the FI problem and refines the input signal. To this end, the FI canceler and channel equalizer functionalities are carefully implemented into the OCR system. The presented OCR system is designed to be fully compliant with the ATSC 3.0 specifications and performs a fast and efficient signal processing by exploiting the specific frame structure. The real product of ATSC 3.0 OCR is fabricated as well, and its feasibility is verified via field and laboratory experiments. The implemented solution is installed at a commercial on-air site and shown to provide substantial coverage gain in practice.