• 제목/요약/키워드: Gabor Wavelet

검색결과 77건 처리시간 0.026초

The properties of the two dimensional q-Gabor wavelet

  • Takahashi, Kouji;Tanaka, Masaru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.373-376
    • /
    • 2002
  • In this paper, we give the definition of the two dimensional q-Gabor wavelet. It consists of the q-normal distribution, which is also given in this paper. If the q-normal distribution is used as a kernel of the Gabor wavelet instead of the normal distribution, the q-Gabor wavelet is obtained. Furthermore, the q-Gabor wavelet is compared with the Gabor and the Haar wavelets to show how good The q-Gabor wavelet is.

  • PDF

임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가 (Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions)

  • 심동규
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.287-295
    • /
    • 2006
  • 본 논문은 임의의 영역 안에 존재하는 텍스처를 검색하기 위한 wavelet과 Gabor기반 텍스처 표현 기법을 제안하고 이들의 검색성능을 평가한다. 지금까지 Gator 평면에서의 평균과 표준편차 특징 기술자가 직사각형안의 텍스처를 표현하기에 가장 적합한 것으로 알려져 있다. 하지만 임의의 영역 안의 물체를 표현하는 기술이 실제 검색이나 여러 다른 텍스처 표현 응용 예에 더욱 필요한 실정이다. 본 연구에서는 wavelet과 Gabor 필터에 기반한 특징 추출법을 제안하고 이들을 실제 텍스처 데이터 베이스에 적용해 본 결과, wavelet기반 특징 기술자가 Gator기반 기술자에 비하여 더욱 효과적임을 발견하였다. 특히 wavelet평면에서 표준편차와 엔트로피 특징을 사용함으로써 가장 좋은 검색 성능을 냄을 알 수 있었다. 또한, 본 논문에서는 다양한 실제 텍스처 영상을 가지고 wavelet과 Gator에 기반한 다양한 특징벡터에 따른 검객 성능을 평가하였다.

  • PDF

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

A consideration on the one dimensional q-wavelet

  • Watanabe, Takashi;Tanaka, Masaru;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.393-396
    • /
    • 2002
  • In this paper, we give the definitions of the q-Haar and q-Gabor wavelet. Instead of using the conventional Gaussian distribution as a kernel of the Gabor wavelet, if the q-normal distribution is used, we can get the q-Gabor wavelet as a possible generalization of the Gabor wavelet. The q-normal distribution, which is given by the author, is one of the generalized Gaussian distribution. On the other hand, if two sets of the q-normal distribution are connected anti-symmetrically, we can get the q-Haar wavelet as a possible generalization of the Haiw wavelet. We give experiments on the q-eabor and q-Haar wavelet and discuss about the q-Gabor and q-Haar wavelet.

  • PDF

Gabor Wavelet과 Genetic Algorithm을 통해 구한 특징점별 가중치를 사용한 얼굴 인식 (Face recognition using Gabor wavelet and Feature weights from Genetic algorithm)

  • 정은성;이필규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.835-837
    • /
    • 2005
  • 본 논문에서는 가보 웨이블릿을 통해 얼굴 이미지로부터 특징을 추출하고, 그에 Genetic Algorithm 을 통해 구한 특징점별 가중치를 적용하여 얼굴 인식을 하는 방법을 소개한다. 각 특징점별로 가중치를 적용하는 방법은, 기존의 Gabor wavelet 을 사용한 얼굴 인식 방법들에 비해 높은 인식률을 보인다. 특징점별 가중치들은 진화 알고리즘을 통해 학습 되어진다.

  • PDF

Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 (Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features)

  • 장익훈;이우신;김남철
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.76-85
    • /
    • 2011
  • 본 논문에서는 Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 방법을 제안한다. 제안된 방법에서는 먼저 시험 영상에 Gabor 변환과 웨이브렛 변환을 적용한다. 웨이브렛 영역의 상세 대역에는 Donoho의 연역치화를 적용하여 잡음을 제거한다. 이어서 Gabor 영상에는 크기 연산자를 적용하고 웨이브렛 부대역에는 BDIP와 BVLC 연산자를 적용한다. 그런 다음 Gabor 크기 영상과 BDIP, BVLC 부대역에 대하여 통계치를 계산하여 그 결과들을 벡터화하고 융합하여 특징 벡터로 사용한다. 분류 단계에서는 얼굴 인식에 주로 사용되는 WPCA를 분류기로 하여 시험 특징 벡터와 가장 유사한 학습 특징 벡터를 찾는다. 실험 결과 제안된 방법은 실험 문서 영상 DB에 대하여 비교적 낮은 특징 벡터 차원으로 매우 우수한 언어 인식 성능을 보여준다.

Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정 (The Selection of the Optimal Gator Wavelet Shape Factor Using the Shannon Entropy Concept)

  • 홍진철;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.176-181
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gabor wavelet shape factor, the notion of the Shannon entropy which mesures the extent of signal energy concentration in the time-frequency plane is employed. To verify the validity of the present entropy-based scheme, we have applied it to the time-frequency analysis of a set of elastic bending wave signals generated by an impact in a solid cylinder.

  • PDF

Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정 (The Selection of the Optimal Gabor Wavelet Shape Factor Using the Shannon Entropy Concept)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.324.1-324
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gator wavelet shape factor, the notion of the Shannon entropy which measures the extent of signal energy concentration in the time-frequency plane is employed. (omitted)

  • PDF

얼굴 검출을 위한 Gabor 특징 기반의 웨이블릿 분해 방법 (Gabor-Features Based Wavelet Decomposition Method for Face Detection)

  • 이정문;최찬석
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.143-148
    • /
    • 2008
  • A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.

  • PDF

Gabor Wavelet과 Fuzzy LDA을 이용한 홍채인식 (Iris Recognition Using the Gabor Wavelet and Fuzzy LDA)

  • 고현주;유병진;전명근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.427-430
    • /
    • 2005
  • 사람의 홍채는 태어날 때 한번 정해지면 평생 변화하지 않는 특성을 가지고 있으며, 개개인별로 모양이 모두 다른 것으로 알려져 있다. 이에, 본 논문에서는 홍채영상 취득시 조명에 의한 동공의 크기 변화에 민감하지 않은 2차원의 홍채패턴을 취득하여, 2D Gabor Wavelet과 Fuzzy LDA를 이용하여 특징 벡터를 추출한다. 인식과정에서는 correlation 계수를 이용하여 서로 다른 홍채의 특징 값에 대해 유사도를 측정하고 유사도가 가장 큰 대상을 찾게 된다. 이때, 4개 방향의 Gabor Wavelet을 거쳐 얻어진 영상에 대해 최고의 값을 인식 대상자로 인정하므로 오 인식 될 확률을 최소화 할 수 있다. 제안한 알고리듬의 유용성을 확인하기 위해 대상자 50명에 대하여 각각 6회씩 촬영한 두 가지 데이터베이스(CASIA, CBNU)를 이용하였으며, 실험 결과 90% 이상의 높은 인식률을 얻었다.

  • PDF