A consideration on the one dimensional q-wavelet
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Abstract: In this paper, we give the definitions of the
g-Haar and g-Gabor wavelet. Instead of using the con-
ventional Gaussian distribution as a kernel of the Ga-
bor wavelet, if the q-normal distribution is used, we can
get the g-Gabor wavelet as a possible generalization of
the Gabor wavelet. The g-normal distribution, which
is given by the author, is one of the generalized Gaus-
sian distribution. On the other hand, if two sets of the
g-normal distribution are connected anti-symmetrically,
we can get the g-Haar wavelet as a possible generaliza-
tion of the Haar wavelet. We give experiments on the
g-Gabor and g-Haar wavelet and discuss about the q-
Gabor and gq-Haar wavelet.

1. Introduction

In this paper, we give the definitions of the q-wavelet,
especially the g-Gabor wavelet and g-Haar wavelet. In-
stead of using the conventional Gaussian distribution as
a kernel of the Gabor wavelet, if the g-normal distribu-
tion is used, we can get the g-Gabor wavelet as a possible
generalization of the Gabor wavelet. On the other hand,
if two sets of the g-normal distributions are connected
anti-symmetrically, we can get the q-Haar wavelet as
a possible generalization of the Haar wavelet. The g-
normal distribution is one of the generalized Gaussian
distribution. The g-normal distribution includes the
conventional Gaussian distribution as the special case
(¢ = 1). The g-normal distribution gives the maxi-
mum value of the Tsallis entropy which is one of the
generalized entropy and is also a non-extensive entropy.
As changing only one parameter ¢, the g-normal dis-
tribution can realize the distribution from the uniform
distribution (¢ — 3) with non-compact support to the
uniform distribution (g — —o0) with compact support
which size is twice the variance continuously, through
the Cauchy distribution, ‘t-distribution’ and the conven-
tional Gaussian distribution. For ¢ < 1, the g-normal
distribution has the compact support, therefore the ob-
tained q-Gabor wavelet has the compact support. This
means that we can get the orthogonal wavelet. In a fol-
lowing section, we give a brief review of the q-wavelet
and show experiments of the g-wavelet transform.

2. The g-normal distribution

The g-normal distribution is given as,
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If ¢ = 1, the g-normal distribution reduces to the con-
ventional normal distribution or Gaussian distribution
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The g-normal distribution gives the maximum value of
the Tsallis entropy which is one of the generalized en-
tropy and is also a non-extensive entropy. As chang-
ing only one parameter g, the q-normal distribution can
realize the distribution from the uniform distribution
(g — 3) with non-compact support to the uniform dis-
tribution (g — —o0) with compact support which size
is twice the variance continuously, through the Cauchy
distribution, ‘t-distribution’ and the conventional Gaus-
sian distribution.
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3. The g-Gabor wavelet
The Gabor wavelet is
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We define the g-Gabor wavelet in the same manner
as the conventional Gabor wavelet. Then the mother
wavelet (the analyzing wavelet) of the g-Gabor wavelet
for ¢ < 1 is defined as follow,
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Figure 1. The uncertainty relation for the g-normal dis-
tribution. For ¢ < —1, the variance A2 diverges.
On the other hand, for 7 < ¢, the variance AZ di-
verges. The minimum is attained at ¢ = 1, that is,
the conventional normal distribution gives the min-
imum uncertainty. But it is seen that the g-Gabor
wavelet defined around ¢ = 1 can be attained the
value quite near the minimum.

where I,(z) is the modified Bessel function of the first
kind and wp is positive and called an analyzing fre-
quency. The width of the time-frequency window A,
and the height of the time-frequency window A, for the
g-Gabor wavelet are
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respectively. Therefore the uncertainty relation for the
q-Gabor wavelet, which is called in the range of —1 <
g< i, isas
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Similar to the conventional Gabor wavelet, the width
and the height of the time-frequency window do not
change in the length, depending on any spectrum of fre-
quency. Figure 1 shows the uncertainty relation for the
g-normal distribution. For ¢ < —1, the variance A2 di-
verges. On the other hand, for § < g, the variance A2
diverges. The minimum is attained at ¢ = 1, that is,
the conventional normal distribution gives the minimum
uncertainty. But it is seen that the g-Gabor wavelet de-
fined around ¢ = 1 can be attained the value quite near
the minimum.

For g < 1, since the g-Gabor wavelet has the compact
support, we can consider the discrete q-Gabor wavelet

by replacing t with 2%t — (m +1)o, /%{—g, where b and m
are the scale (dilatation) and shift (translation) param-

eters respectively, and both b and m are integers. Then

the discrete g-Gabor wavelet is
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for 27%(2mo, /‘;'—:g) <t<27%2(m+1)o -13—:—3)) This
wavelet is called the Type-1 g-Gabor wavelet. Figure
2 shows the Gabor wavelet and the Type-1 g-Gabor
wavelet for various ¢ with b = 1, m = 0, ¢ = 1.0,
wp = 1.0.

On the other hand, another discrete g-Gabor wavelet
can be constructed. Since the g-Gabor wavelet with ¢ <

1 has the compact support with its width of 2,/ ?—:—go,

when the analyzing frequency wq is chosen such that
the periodic time is proportional to the width of the
support, that is,
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where n is an integer, then we have

n=123--. (11)

In this case, we have the following discrete g-Gabor
wavelet
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This wavelet is called the Type-2 g-Gabor wavelet.
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Figure 3. The Haar wavelet and the g-Haar wavelet for
various ¢ with b = 0,m = 1. For ¢ —» —o0, the
g-Haar wavelet is equal to the Haar wavelet.

c)q 0.0 (d) g=-0.5
Figure 2. The Gabor wavelet and the Type-1 g-Gabor
wavelet for various gwithb=1,m = 0,0 = 1.0,wp =
1.0. The solid line stands for the real part and the

dotted line for the imaginary part.

4. gq-Haar wavelet
The Haar wavelet is
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If two sets of the g-normal distributions are connected
anti-symmetrically, we can get the g-Haar wavelet as a
possible generalization of the Haar wavelet. Then the
q-Haar wavelet is
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where b and m are integers. Figure 3 shows the Haar
wavelet and the g-Haar wavelet for various ¢ with b = 0,
m = 1. For ¢ — —o0, the g-Haar wavelet is equal to the
Haar wavelet.

5. Experiments

We give experiments on the Gabor wavlet, the Haar
wavelet, the Type-1 g-Gabor wavelet, the Type-2 g-
Gabor wavelet and the g-Haar wavelet. Figure 4 shows
examples of the Gabor wavelet transform and the Haar
wavelet transform. (a) is input signal for the Gabor
wavelet transform, y(t) = cos4t. (b) is Gabor wavelet
transform of (a). (c¢) is input signal for the Haar wavelet
transform, y(t) = cos §t. (d) is Haar wavelet transform

of (c). Figure 5 and Figure 6 show examples of the
Type-1 g-Gabor wavelet, the Type-2 q-Gabor wavelet
and the g-Haar wavelet for various parameter ¢q. Input
signal is given as Figure 4(a). Figure 7 shows exam-
ples of the Haar wavelet for various parameter ¢q. Input
signal is given as Figure 4(a). The vertical axes repre-
sents scale (dilation) and the horizontal axes shows shift
(translation).

Figure 5(e) is similar to Figure 4(b). The Type-1 q-
Gabor wavelet with ¢ = —0.3 has most effect for the
input signal, y(t) = cos4¢t. Therefore, we can estimate
the width of input signal using the information, ¢ =
—0.3.

In Figure 7, all examples are similar to Figure 4(d).
It is found that the g-Haar wavelet has similar property
to Haar wavelet.

Further research is to make system which decide
paramter ¢ automatically for various input signal.
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(c) Input signal

(2) Input signal (b) Gabor wavelet (d) Haar wavelet

Figure 4. Example of the Gabor and Haar wavelet transform. (a) is input signal for Gabor wavelet transform,
y(t) = cos4t. (b) is Gabor wavelet transform of (a). (c) is input signal for Haar wavelet transform, y(t) = 5¢.
(d) is Haar wavelet transform of (¢). The vertical axes of (b) represents scale and the horizontal axes shows

shift.

(a) ¢ =0.1 (b) ¢ =0.0 (c) ¢=—0.1 (d) g=-02 (e) g=—0.3
Figure 5. Examples of the Type-1 g-Gabor wavelet transform for various ¢ with ¢ = 1.0,w = 1.0. Input signal
is given as Figure 4(a). The vertical axes represents scale (dilation) and the horizontal axes shows shift
(translation).
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(a) g =0.7 (b) g=10.6 (¢c) g=105 (d)q 04 (e) g=10.3

Figure 6. Examples of the Type-2 q-Gabor wavelet transform for various ¢ with n = 1. Input signal is given as
Figure 4(a). The vertical axes represents scale (dilation) and the horizontal axes shows shift {(translation).
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(a) g =0.5 (b) g = —1.0 (¢) g=—-10.0 (d) ¢ = —100.0

Figure 7. Examples of the g-Haar wavelet transform for various ¢. Input signal is given as Figure 4(c). The vertical
axes represents scale (dilation) and the horizontal axes shows shift (translation).
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