• Title/Summary/Keyword: GaS

Search Result 3,046, Processing Time 0.027 seconds

Photoluminescent Properties of EuGa2S4 and Eu2Ga2S5 Phosphors (EuGa2S4와 Eu2Ga2S5 형광체의 발광 특성)

  • Young-Sik Cho;Min-Kyeong Jang;Young-Duk Huh
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.236-240
    • /
    • 2023
  • Non-concentration quenching EuGa2S4 and Eu2Ga2S5 phosphors, in which the concentration of Eu2+ activator ion is 100%, were synthesized by a solid state reaction at temperature range from 800 to 1050 ℃. The wavelength of maximum intensity (λmax) of EuGa2S4 and Eu2Ga2S5 phosphors are 546 and 581 nm, respectively. An examination of the X-ray diffraction patterns and photoluminescent properties of EuGa2S4 and Eu2Ga2S5 phosphors revealed that EuGa2S4 and Eu2Ga2S5 phosphors were formed at lower temperature range (800~900 ℃) and higher temperature range (1000~1050 ℃), respectively.

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

Synthesis of SrGa2S4 Phosphor and Its Luminescent Properties (SrGa2S4 형광체의 합성과 발광 특성)

  • Heo, Yeong-Deok;Sim, Jae-Hun;Do, Yeong-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.164-168
    • /
    • 2002
  • SrGa$_2$S$_4$ : Eu is a green emitting phosphor which is applied for field emission display, and cathodoluminescence. Conventionally, SrGa$_2$S$_4$ : Eu is synthesized by solid state reaction, in which a mixture of SrCO$_3$, Ga$_2$O$_3$, and Eu$_2$O$_3$ is fired at high temperatures under flowing H$_2$S and Ar gases. In this study,SrGa$_2$S$_4$ : Eu phosphor is synthesized by using a decomposition method, where SrS, Eu complex, and Ga com-plex are used. The advantage of this method is that toxic H$_2$S gas and Ar gas are not used. The synthetic con-ditions and luminescent properties of SrGa$_2$S$_4$ : Eu phosphor are also investigated.

Growth and optic characteristics of AgGaS$_2$/GaAs single crystal thin film by hot wall epitaxy (HWE 방법에 의한 AgGaS$_2$/GaAs 단결정 박막 성장과 광학적 특성)

  • 이상열;홍광준;정준우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.281-287
    • /
    • 2002
  • The stochiometric composition of AgGaS$_2$ polycrystal source materials for the AgGaS$_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal AgGaS$_2$ has tetragonal structure of which lattice constant a$\sub$0/ and c$\sub$0/ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. AgGaS$_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal AgGaS$_2$ by the Hot Wall Epitaxy (100) system. The source and substrate temperature were 590$^{\circ}C$ and 440$^{\circ}C$ respectively. The crystallinity of the grown AgGaS$_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for AgGaS$_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}$ : 8.695${\times}$10$\^$-4/ eV/K, and ${\beta}$ = 332 K. From the photocurrent spectra by illumination of polarized light of the AgGaS$_2$/GaAs epilayer, we have found that crystal field splitting ΔCr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pain are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Growth and optical properties for $AgGaS_2$ epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$ 박막성장과 광학적특성)

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.56-59
    • /
    • 2004
  • The stochiometric composition of $AgGaS_2$ polycrystal source materials for the $AgGaS_2/GaAs$ epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$ has tetragonal structure of which lattice constant $a_0$ and $c_0$ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. $AgGaS_2/GaAs$ epilayer was deposited on throughly etched GaAs (100) substrate from mixed crystal $AgGaS_2$ by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2/GaAs$ epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2/GaAs$ epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}=8.695{\times}10^{-4}eV/K$, and $\beta$=332 K. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2/GaAs$ epilayer, we have found that crystal field splitting $\Delta$ Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Air-exposure of GaAs Treated with $({NH_4})_2{S_x}$ Solution; the Oxidation Mechanism and the Stability of GaAs surface ($({NH_4})_2{S_x}$ 용액 처리된 GaAs의 대기중 노출;GaAs 표면산화기구 및 안정성)

  • Gang, Min-Gu;Sa, Seung-Hun;Park, Hyeong-Ho;Seo, Gyeong-Su;O, Gyeong-Hui;Lee, Jong-Ram
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1270-1278
    • /
    • 1996
  • 고진공하에서 벽개된 GaAs를 대기중 노출시킨후, 결합상태 및 조성의 변화를 정량적으로 연구하여 Ga의 우선적 산화경향 및 결합의 붕괴에 기인한 원소상태 Ga 및 As의 생성을 관찰하였다. 대기중 노출시, 초기 Ga/As 비(=0.01)는 Ga의 우선적 산화에 의해 증가하였으며 원소상태 As의 증가와 더불어 일정값(=1.25)으로 유지되었다. 습식세정된 GaAs와 유황처리된 (S-passivated)GaAs를 각각 대기중에 노출시켜, 각각의 표면상태 변화를 비교, 관찰하였다. 유황처리된 GaAs는 습식세정처리만한 GaAs에 비해 산화막 성장이 크게 억제되었고, 이는 (NH4)2Sx 용액 처리로 형성된 Ga-S 및 As-S 겹합의 표면보호 효과에 기인한 것이다. 특히 대기중 노출에 따른 유황처리된 GaAs 표면조성 및 결합상태 변화의 정량적 관찰을 통하여, 유황보호막(S-passivation layer) 및 GaAs 표면과 대기중 산소와의 반응 기구를 규명할 수 있었다. 대기중 노출에 따라, 표면의 Ga-S 및 As-S 결합은 대기중 산소와 반응하여 점차 붕괴, 감소하는 경향을 나타냈으며, 이와 동시에 unpassivated 상태의 GaAs가 산소와 반응하여 Ga-O 결합을 형성함을 관찰할 수 있었다. 본 연구에서는 X-선 광전자 분광기를 사용하여 GaAs 표면 조성 및 결합상태의 변화를 관찰하였다.

  • PDF

Synthesis and luminescence properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors ($Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ 형광체의 합성과 발광 특성)

  • Sung, Hye-Jin;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.267-272
    • /
    • 2006
  • A series of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have been synthesized by solid-state reaction. The photoluminescence and structural properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ have been examined. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have a strong absorption at 400 nm, which is the emission wavelength of a violet light emitting diode (LED). The emission peaks of $SrGa_2S_4:Ce,Na$are located at 448 nm and 485 nm. The partial replacement of Sr by Ca in $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ causes a red shift of emission wavelengths. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ can be used as blue emitting phosphors pumped by the violet LED for fabricating the multi-band white LED.

Fabrication of AlGaAs/InGaAs/GaAs Pseudomorphic HEMT's for mm waves. (mm파 AlGaAs/InGaAs/GaAs Power PM-HEMT 제작 연구)

  • 이성대;허종곤이일형이진구
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.633-636
    • /
    • 1998
  • In this study, power AlGaAs/InGaAs/GaAs PM-HEMT's for mm wave's were fabricated using Electron beam lithography and air-bridge techniques, and so on. DC and AC characteristics of the fabricated power PM-HEMTs were measured under the various bias conditions. For example, DC and RF characteristics such as S21 gain of 3.6 dB at 35 ㎓, current gain cut-off frequencies of 45 ㎓ and maximum oscillation frequencies of 100 ㎓ were carefully analyzed for design methodology of sub-mm wave power devices.

  • PDF

Study of characteristics of $AgGaS_2$/GaAs epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$/GaAs epilayer 성장과 특성)

  • Hong, K.J.;Jeong, J.W.;Bang, J.J.;Jin, Y.M.;Kim, S.H.;Yoe, H.S.;Yang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.84-91
    • /
    • 2002
  • The stochiometric composition of $AgGaS_2$/GaAs polycrystal source materials for the $AgGaS_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$/GaAs has tetragonal structure of which lattice constant an and Co were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$/GaAs by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by $\alpha=8.695{\times}10^{-4}$ eV/K, and $\beta=332K$. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2$/GaAs epilayer, we have found that crystal field splitting ${\Delta}Cr$ was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF