• Title/Summary/Keyword: GaN-based material

Search Result 86, Processing Time 0.029 seconds

Reduction of Operating Voltage of GaN-based Blue-violet Laser Diode by using Highly Mg Doped GaN Layer (고농도의 Mg가 도핑된 GaN층을 이용한 GaN계 청자색 레이저다이오드의 동작 전압 감소)

  • 곽준섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.764-769
    • /
    • 2004
  • In order to reduce operating voltage of the GaN based blue-violet laser diodes, the effect of highly Mg doped GaN layer, which was grown below ohmic contact metals, on contact resistivity as well as operating voltage has been investigated. The addition of the highly Mg doped GaN layer greatly reduced contact resistivity of Pd/Pt/Au ohmic contacts from $5.2 \times {10}^-2 \Omegaㆍ$\textrm{cm}^2$ to 7.5 \times {10}^-4 \Omegaㆍ$\textrm{cm}^2$$. In addition, it also decreased device voltage at 20 mA by more than 3 V. Temperature- dependent sheet resistivity of the highly Mg doped GaN layer suggested that the reduction of the contact resistivity could be attributed to predominant current flow at the interface between the Pd/Pt/Au contacts and p-GaN through a deep level defect band, rather than the valence band.

InGaN/GaN 양자우물층을 관통한 광결정 청색발광소자의 전기발광 특성

  • Choi, Jae-Ho;Lee, Jung-Tack;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.42-42
    • /
    • 2010
  • Deep-trenched photonic crystals passing through InGaN/GaN quantum well structural layer have been fabricated on the surface of GaN-based light emitting diode(LED) using by electron beam nanolithography. The lattice constant and hole diameter of the photonic crystals are 230nm and 140nm, respectively. The structural and electro-optical properties have been investigated by scanning electron microscope(SEM) and power-current-voltage(L-I-V). Electroluminescence from GaN-based LED with deep-trenched photonic crystal shows the higher intensity than that without photonic crystal.

  • PDF

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.

Thermal Effect Modeling for AlGaN/GaN HFET on Various Substrate (AlGaN/GaN HFET의 기판에 따른 열효과 분석 모델링)

  • 박승욱;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.221-225
    • /
    • 2001
  • In the paper, we report on the DC and Thermal effect of the GaN based HFET. A physics-based a model was applied and found to be useful for predicting the DC performance and Thermal effect of the GaN based HFET by Various substrate. The performance of device on the sapphire substrates is found to be significantly improve compared with that of a device with an sapphire substrate. The peak drain current of the device achieved at HFET on the SiC substrate

  • PDF

Synthesis of GaN nanowires using thermal chemical vapor deposition (열화학기상증착법을 이용한 GaN nanowire 합성)

  • 류승철;이태재;이철진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.931-934
    • /
    • 2001
  • GaN nanowires has much interest as one-dimensional materials for blue light LED. GaN-based materials have been the subject of intensive research for blue light emission and high temperature/high power electronic devices. In this letter, the synthesis of GaN nanowires by the reaction of mixture of GaN nanowires by the reaction of mixture of Ga meta and GaN powder with NH$_3$ using thermal chemical vapor deposition is reported. X-ray diffraction, energy dispersive x-ray spectrometer, scanning electron microscopy, and transmission electron microscopy indicate that those GaN nanowires with hexagonal wurtzite structure were about 60nm in diameter and up to several hundreds of micrometers in length.

  • PDF

Emission of spin-polarized light in GaN-based spin LEDs (GaN계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Yoon, Suk-Ho;Park, Yong-Jo;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.150-152
    • /
    • 2005
  • We investigated the fabrication and characteristics of spin-polarized LEDs based on GaN using (Ga,Mn)N as spin injection source. (Ga,Mn)N thin films were found to exhibit the ferromagnetic ordering above room temperature and the negative MR up to room temperature. The electrical characteristics in spin LEDs did not degraded in spite of the insertion of (Ga,Mn)N films. In EL spectra of spin LEDs, it is confirmed that spin LEDs emit the strong light at 7 K as well as room temperature. These results suggest that it is possible to emit spin-polarized light in our spin LEDs.

  • PDF

Thermal Effect Modeling for AIGaN/GaN HFET on Various Substrate (AlGaN/GaN HFET의 기판에 따른 열효과 분석 모델링)

  • Park, Seung-Wook;Shin, Moo-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.221-225
    • /
    • 2001
  • In the paper, we report on the DC and Thermal effect of the GaN based HFET. A physics-based a model was applied and found to be useful for predicting the DC performance and Thermal effect of the GaN based HFET by Various substrate. The performance of device on the sapphire substrates is found to be significantly improve compared with that of a device with an sapphire substrate. The peak drain current of the device achieved at HFET on the SiC substrate

  • PDF

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매)

  • An, Soyeon;Jeon, Dae-Woo;Hwang, Jonghee;Ra, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.143-148
    • /
    • 2019
  • We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

Synthesis of GaN micro-scale powder and its characteristics (GaN 미세 분말의 합성과 특성)

  • 조성룡;여용운;이종원;박인용;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.554-557
    • /
    • 2001
  • In this work, we had synthesis the GaN powder by direct reaction between Ga and NH$_3$at the temperature range of 1000∼1150$^{\circ}C$, and investigated the reaction condition dependence of the GaN yield and some properties of GaN powder. The synthesized powder had Platelet and prismatic shape and showed hexagonal crystalline structure with the lattice constants of a= 3.1895 ${\AA}$, c= 5.18394 ${\AA}$, and the ratio of c/a = 1.6253. The GaN powder synthesis processes were examined based on the oxidation process of mater, and found as combined with mass transport process for the initial stage and diffusion-limited reaction for the extended reaction.

  • PDF

Low Resistance Indium-based Ohmic Contacts to N-face n-GaN for GaN-based Vertical Light Emitting Diodes (GaN계 수직형 발광 다이오드를 위한 N-face n-GaN의 인듐계 저저항 오믹접촉 연구)

  • Kang, Ki Man;Park, Min Joo;Kwak, Joon Seop;Kim, Hyun Soo;Kwon, Kwang Woo;Kim, Young Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.456-461
    • /
    • 2010
  • We investigated the In-based ohmic contacts on Nitrogen-face (N-face) n-type GaN, as well as Ga-face n-type GaN, for InGaN-based vertical Light Emitting Diodes (LEDs). For this purpose, we fabricated Circular Transfer Length Method (CTLM) patterns on the N-face n-GaN that were prepared by using a laser-lift off method, as well as on the Ga-face n-GaN that were prepared by using a dry etching method. Then, In/transparent conducting oxide (TCO) and In/TiW schemes were deposited on the CTLM in order for low resistance ohmic contacts to form. The In/TCO scheme on the Ga-face n-GaN showed high specific contact resistance, while the minimum specific contact resistance was only 3${\times}$10$^{-2}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$, which can be attributed to the high sheet resistance of the TCO layer. In contrast, the In/TiW scheme on the Ga-face n-GaN produced low specific contact resistance of 2.1${\times}$10$^{5}$ $\Omega$-cm$^{2}$ after annealing at 500${^{\circ}C}$ for 1 min. In addition, the In/TiW scheme on the N-face n-GaN also resulted in a low specific contact resistance of 2.2${\times}$10$^{-4}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$. These results suggest that both the Ga-face n-GaN and N-face n-GaN.