• Title/Summary/Keyword: GaN HEMT Die

Search Result 4, Processing Time 0.017 seconds

S-Band Internally-Matched High Efficiency and High Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 S-대역 내부 정합형 고효율 고출력 증폭기)

  • Kim, Sang-Hoon;Choi, Jin-Joo;Choi, Gil-Wong;Kim, Hyoung-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.540-545
    • /
    • 2015
  • This paper presents the design, fabrication and measurement results of a S-band internally-matched power amplifier using Gallium Nitride High Electron Mobility Transistor(GaN HEMT) die. In order to fabricate the S-band internally-matched power amplifier, a high dielectric substrate and alumina were used for input/output matching circuits. The measured output power is 55.4 dBm, the drain efficiency is 78 % and the power gain is 11 dB under pulse operation at the frequency of 3 GHz.

Design and Fabrication of Ku-Band Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 Ku-대역 전력 증폭기 설계 및 제작)

  • Kim, Sang-Hoon;Kim, Bo-Ki;Choi, Jin-Joo;Jeong, Byeoung-Koo;Tae, Hyun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.646-652
    • /
    • 2014
  • This paper presents a design and fabrication of Ku-band power amplifier using Gallium Nitride High Electron Mobility Transistor (GaN HEMT) die. In order to fabricate the low-cost Ku-band power amplifier, a Printed Circuit Board(PCB) was used for input/output matching circuits instead of manufacturing process to use an expensive substrate. The measured output power is 42.6 dBm, the drain efficiency is 37.7 % and the linear gain is 7.9 dB under pulse operation at the frequency of 14.8 GHz. Under the continuous wave(CW) test, the output power is 39.8 dBm, the drain efficiency is 24.1 % and the linear gain is 7.2 dB.

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.