• Title/Summary/Keyword: Ga-doped ZnO film

Search Result 106, Processing Time 0.03 seconds

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • Park, Si-Nae;Son, Dae-Ho;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

Low-Temperature Deposition of Ga-Doped ZnO Films for Transparent Electrodes by Pulsed DC Magnetron Sputtering

  • Cheon, Dongkeun;Ahn, Kyung-Jun;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to $250^{\circ}C$, respectively. Electrical properties of the GZO films initially improved with increase of temperature to $150^{\circ}C$, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Dependance of thickness on the properties of B doped ZnO:Ga (GZOB) thin film on glass substrate at room temperature (유리기판에 저온 증착한 GZOB 박막의 두께에 따른 특성 변화)

  • Yu, Hyun-Kyu;Lee, Kyu-Il;Lee, Jong-Hwan;Kang, Hyun-Il;Lee, Tae-Yong;Kim, Eung-Kwon;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.88-88
    • /
    • 2008
  • In this study, effect of thickness on structural, electrical and optical properties of B doped ZnO:Ga (GZOB) films was investigated. GZOB films were deposited on glass substrates by DC magnetron sputtering. The thickness range of films were from 100 nm to 600 nm to identified as increasing thickness, stress between substrate and GZOB film. The average transmittance of the films was over 80 % until 500 nm. Then a resistivity of $9.16\times10^{-4}\Omega$-cm was obtained. We presented that a GZOB film of 400 nm was optimization to obtain a high transmittance and conductivity.

  • PDF

Structural, Optical, and Electrical Properties of IGZO Thin Film Sputtered with Various RF Powers (RF 파워 변화에 따른 IGZO 박막의 구조적, 광학적, 전기적 특성)

  • Jin, Chang-Hyun;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.620-624
    • /
    • 2015
  • We have studied structural, optical and electrical properties of In-Ga-doped ZnO (IGZO) thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 30, 50, 70, and 90 W respectively. All of the IGZO thin films transmittance in the visible range (400 nm ~ 800 nm) was above 83%. XRD analysis showed the IGZO thin films amorphous structure of the thin films without any peak. And also IGZO thin film have low resistivity ($1.99{\times}10^{-3}{\Omega}cm$), high carrier concentration ($6.4{\times}10^{20}cm^{-3}$), and mobility ($10.3cm^2V^{-1}s^{-1}$). By the studies we found that IGZO transparent thin film can be used as optoelectronic material and introduced application possibility for future electronic devices.

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates (LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구)

  • Hwang, Hyun Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

Transparent ZnO thin film transistor with long channel length of 1mm (1mm의 채널을 갖는 ZnO 투명 박막 트랜지스터)

  • Lee, Choong-Hee;Ahn, Byung-Du;Oh, Sang-Hoon;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.34-35
    • /
    • 2006
  • Transparent ZnO thin film transistor (TFT) is fabricated on the glass substrates. The device consists of a high mobility intrinsic ZnO as a semiconductor active channel, Ga doped ZnO (GZO) as an electrode, $HfO_2$ as a gate insulator. GZO and $HfO_2$ layers are prepared by using a pulsed laser deposition and intrinsic ZnO layers are fabricated by using an rf-magnetron sputtering, respectively. The transparent TFT is highly transparent (> 87 %) and exhibits n-channel, enhancement mode behavior with a field-effect mobility as large as $11.7\;cm^2/Vs$ and a drain current on-to-off ratio of about $10^5$.

  • PDF

A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment (산화물 반도체의 다양한 처리를 통한 박막트랜지스터의 전기적 특성 향상)

  • Kim, Taeyong;Jang, Kyungsoo;Raja, Jayapal;Phu, Nguyen Thi Cam;Lee, Sojin;Kang, Seungmin;Trinh, Than Thuy;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • The ultimate aims of display market is transparent or flexible. Researches have been carried out for various applications. It has been possible to reduced the process steps and get good electrical properties for semiconductors with large optical bandgaps. Oxide semiconductors have been established as one of the leading and promising technology for next generation display panels. In this paper, alternative treatment processes have been tried for oxide semiconductors of thin film transistors to increase the electrical properties of the thin film transistors and to investigate the mechanisms. There exist a various oxide semiconductors. Here, we focused on InGaZnO, ZnO and InSnZnO which are commercialized or researched actively.

Optimization of GZO/Ag/GZO Multilayer Electrodes Obtained by Pulsed Laser Deposition at Room Temperature

  • Cheon, Eunyoung;Lee, Kyung-Ju;Song, Sang Woo;Kim, Hwan Sun;Cho, Dae Hee;Jang, Ji Hun;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.336.2-336.2
    • /
    • 2014
  • Indium Tin Oxide (ITO) thin films are used as the Transparent Conducting Oxide (TCO), such as flat panel display, transparent electrodes, solar cell, touch screen, and various optical devices. ZnO has attracted attention as alternative materials to ITO film due to its resource availability, low cost, and good transmittance at the visible region. Recently, very thin film deposition is important. In order to minimize the damage caused by bending. However, ZnO thin film such as Ga-doped ZnO(GZO) has poor sheet resistance characteristics. To solve this problem, By adding the conductive metal on films can decrease the sheet resistance and increase the mobility of the films. In this study, We analyzed the electrical and optical characteristics of GZO/Ag/GZO (GAG) films by change in Ag and GZO thickness.

  • PDF

Properties of ZnO:Ga Thin Film Fabricated on Polyimide Substrate by RF Magnetron Sputtering (폴리이미드 기판 위에 RF 마그네트론 스퍼터링 공정으로 증착된 ZnO:Ga 박막의 특성)

  • Park, Seung-Beum;Kim, Jeong-Yeon;Kim, Byeong-Guk;Lim, Jong-Youb;Yeo, In-Hwan;Ahn, Sang-Ki;Kweon, Soon-Yong;Park, Jae-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.374-378
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on polyimide substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the polyimide substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 120 sec, the resistivity of GZO films on the polyimide substrate was $1.90{\times}10^{-3}{\Omega}-cm$.