• Title/Summary/Keyword: Ga-doped

Search Result 489, Processing Time 0.022 seconds

A Study on the Chracteristics of $ Al_xGa_{1-x}$Sb grown by Vertical Bridgman Method (수직브리지만 방법으로 성장한$ Al_xGa_{1-x}$Sb의 특성에 관한 연구)

  • 이재구;김영호;정성훈;송복식;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.207-213
    • /
    • 1996
  • A ternary compound semiconductor $Al_{x}$-Ga/1-x/Sb crystals which have energy gap from 0.7eV to 1.6ev at room temperature with the composition ratio were grown by using the vertical Bridgman method. The characteristics of $Al_{x}$-Ga/1-x/Sb were investigated in this study. The lattice constants of $Al_{x}$-Ga/1-x/Sb crystals with the composition ratio were appeared from 6.096$\AA$ to 6.135$\AA$ with the composition ratio. The electrical properties of the $Al_{x}$-Ga/1-x/Sb crystals measured the Hall effect by van der Pauw method at the magnetic field of 3 kilogauss and at room temperature. The resistivity of Te-doped $Al_{x}$-Ga/1-x/Sb crystals increased from 0.771 $\Omega$-cm to 5 $\Omega$-cm at room temperature with increasing the composition ratio. The mobility of Te-doped $Al_{x}$-Ga/1-x/Sb crystals varied with the composition ratio x, within the following three different regions, such as GaSb-like (0$\leq$x$\leq$0.3), intermediate (0.3$\leq$x$\leq$0.4) and AlSb-like (0.4$\leq$x$\leq$1).eq$1).

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphors with the Doped Activator (활성제 첨가에 따른 ZnGa2O4 형광체의 발광특성)

  • Hong Beom-Joo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.432-436
    • /
    • 2006
  • The $ZnGa_2O_4$ and Mn, Cr-doped $ZnGa_2O_4$ Phosphors were synthesized through conventional solid state reactions. The XRD patterns show that the $ZnGa_2O_4$ has a (3 1 1) main peak and a spinel phase. The emission wavelength of $ZnGa_2O_4$ showed main peak of 420 nm and maximum intensity at the sintering temperature of $1100^{\circ}C$. In the crystalline $ZnGa_2O_4$, the Mn shows green emission (510 nm, $^4T_1-^6A_1$) with a quenching concentration of 0.6 mol%, and the Cr shows red emission (705 nm, $^4T_2-^4A_2$) with a quenching concentration of 2 mol%. These results indicate that $ZnGa_2O_4$ Phosphors hold promise for potential applications in field emission display devices with high brightness operating in full color regions.

Optical Characterization on Undoped and Mg-doped GaN Implanted with Nd (Nd이 이온주입된 undoped와 Mg-doped GaN의 분광 특성 연구)

  • Song, Jong-Ho;Rhee, Seuk-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.624-629
    • /
    • 2006
  • The energy transfer process between GaN and Nd ions as well as Mg codoping effect were investigated in Nd-implanted GaN films. Photoluminescence (PL) and PL excitation spectroscopies were performed on $^4F_{3/2}{\rightarrow}^4I_{9/2}$ Nd ionic level transition. At least three below bandgap traps were identified in the energy transfer process. The number of one particular trap, which is assigned to be an isoelectronic Nd trap, is increased with the Mg-codoping. The emission efficiency with above gap excitation, which emulates the electrical excitation, is further increased in GaN:Mg,Nd.

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

Single Crystal Growth of GaAs by Single Temperature Zone horizontal Bridgman(1-T HB) Method (단일 온도대역 수평 Bridgman(1-T HB) 법에 의한 GaAs 단결정 성장)

  • 오명환;주승기
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1996
  • The single crystal growth has been carried out with the newly designed 1-T HB(single temperature zone horizontal Bridgman) system for GaAs crystals of 2 inch diameter doped with Si, Zn or undoped. With this method, incidence probability of single crystallinity was shown to be 0.73. Lattice defects evaluated from EPD(etch pit density) measurement were in the range of 5,000-20,000/cm2, dependent upon the doping condition. For the undoped GaAs crystals, carrier concentrations from the Hall measurement were ∼1×1016/cm3 at the seed part, which were less than half the concentrations of double of triple temperature zone(2-T, 3-T) HB grown crystals. By the 1-T HB method, therefore, GaAs crystals can be grown successfully with better yield and higher purity.

  • PDF

Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell (연료전지용 LSGM 페로브스카이트계 전해질의 합성 및 특성 연구)

  • Seong, Young-Hoon;Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.696-702
    • /
    • 2007
  • The family of (Sr,Mg)-doped $LaGaO_3$ compounds, which exhibit high ionic conductivity at $600-800^{\circ}C$ over a wide range of oxygen partial pressure, appears to be promising as the electrolyte for intermediate temperature solid oxide fuel cells. Conventional synthesis routes of (Sr,Mg)-doped $LaGaO_3$ compounds based on solid state reaction have some problems such as the formation of impurity phases, long sintering time and Ga loss during high temperature sintering. Phase stability problem especially, the formation of additional phases at the grain boundary is detrimental to the electrical properties of the electrolyte. From this point of view, we focused to synthesize single phase (Sr,Mg)-doped $LaGaO_3$ electrolyte at the stage of powder synthesis and to apply relatively low heat-treatment temperature using novel synthesis route based on combustion method. The synthesized powder and sintered bulk electrolytes were characterized by XRD, TG-DTA, FT-IR and SEM. AC impedance spectroscopy was used to characterize the electrical transport properties of the electrolyte with the consideration of the contribution of the bulk lattice and grain boundary to the total conductivity. Finally, relationship between synthesis condition and electrical properties of the (Sr, Mg)-doped $LaGaO_3$ electrolytes was discussed with the consideration of phase analysis results.

Microstructure of ZnO:Ga Thin Films by RF magnetron sputtering (RF 스퍼터링법에 의한 ZnO:Ga 박막의 미세구조)

  • Kim, Byung-Sub;Lee, Sung-Wook;Lim, Dong-Gun;Park, Min-Woo;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.477-480
    • /
    • 2004
  • Ga doped zinc oxide films (ZnO:Ga) were deposited on glass substrate by RF magnetron sputtering from a ZnO target mixed with $Ga_O_3$. The effects of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The structural and electrical properties of the film are highly affected by the variation of RF discharge power. The lowest electrical resistivity of $4.9{\times}10^{-4}\;\Omega-cm$ were obtained with the film deposited from 3 wt% of $Ga_2O_3$ doped target and at 200 W in RF discharge power. The transmittance of the 900 nm thin film was 91.7% in the visible waves. The effect of annealing on the as-deposited film was also studied to improve the electrical resistivity of the ZnO:Ga film.

  • PDF

Electrical spin injection and detection in epitaxially grown Fe/GaAs (001) hybrid structure (에피성장된 Fe/GaAs (001) 적층구조에서의 스핀 주입 및 검출)

  • Lee, Tae-Hwan;Koo, Hyun-Cheol;Kim, Kyung-Ho;Kim, Hyung-Jun;Han, Suk-Hee;Lim, Sang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.357-357
    • /
    • 2008
  • Spin injection experiment is conducted in epitaxially grown Fe/GaAs hybrid structure. For the formation of Schottky tunnel barrier between Fe and GaAs layers, highly n-doped GaAs layers are grown after n-doped channel layer. A non-local measurement, a voltage measurement probes do not contain a charge current path, is used for detecting only the chemical potential differences by the spin transport. As a result, the dips that are nicely matched with antiparallel region are obtained.

  • PDF

(GaN MODFET Large Signal modeling using Modified Materka model) (Modified Materka model를 이용한 GaN MODFET 대신호 모델링)

  • 이수웅;범진욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.217-220
    • /
    • 2001
  • CaN(gallium nitride) MODFET(modulation doped field effect transistor) large signal model was studied using Modified Materka-Kacprzak large signal MODFET model. using the Dambrine's method[3, at 45MHz-40㎓, Measured S-parameter and DC characteristics. based on measuring results, small signal parameter extraction was conducted. by the cold FET[4]method, measured parasitic elements were de-embedding. Extracted small signal parameters were modeled using modified Materka model, a sort of fitting function reproduce measuring results. to confirm conducted large signal modeling, modeled GaN MODFET's DC, S-parameter and Power characteristics were compared to measured results, respectively. by results were represented comparatively agreement, this paper showed that modified Materka model was useful in the GaN MODFET large signal modeling.

  • PDF

Half-metallic Ferromagnetism for Mn-doped Chalcopyrite (Al,Ga)As Semiconductor (Chalcopyrite (Al,Ga)As 반도체와 Mn의 반금속 강자성)

  • Kang, B.S.;Song, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • We studied the electronic and magnetic properties for the Mn-doped chalcopyrite (CH) AlAs, GaAs, and AlGaAs2 semiconductor by using the first-principles calculations. The chalcopyrite AlGaP2, AlGaAsP, and AlGaAs2 compounds have a semiconductor characters with a small band-gap. The interaction between Mn-3d and As-4p states at the Fermi level dominate rather than the other states. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the Mn(3d)-As(4p) strong coupling, which is attributed by the partially filled As-4p bands. The holes are mediated with keeping their 3d-electrons, therefore the ferromagnetic state is stabilized by this double-exchange mechanism. We noted that the ferromagnetic state with high magnetic moment is originated from the hybridized As(4p)-Mn(3d)-As(4p) interaction mediated by the holes-carrier.