• Title/Summary/Keyword: GZO thin film

Search Result 65, Processing Time 0.024 seconds

The change of electric and optical properties by high density $O_2$ plasma treatment of deposited GZO Thin Film on Polyimide substrate (Polyimide 기판 위에 증착된 GZO 박막의 고밀도 $O_2$ 플라즈마 처리에 따른 전기적, 광학적 특성 변화)

  • Kim, Byeong-Guk;Kwon, Soon-Il;Park, Seung-Beom;Lee, Seok-Jin;Jung, Tae-Hwan;Yang, Kea-Joon;Lim, Dong-Gun;Park, Jea-Hwan;Kim, Myeong-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.162-163
    • /
    • 2008
  • 이 논문에서는 Polyimide 기판의 $O_2$ 플라즈마 처리효과에 따른 GZO 박막의 구조적, 전기적, 광학적인 특성을 고찰하였다. ICP-RIE 방법을 이용하여 Polyimide 기판의 $O_2$ 플라즈마 처리의 변수로 RF power와 처리시간을 각 100 ~ 400 W, 120 ~ 600 초까지 조절하였다. RF 스퍼터링 방법으로 $O_2$ 플라즈마 처리효과에 따른 Polyimide 기판을 4인치의 GZO(ZnO : 95 wt%, $Ga_2O_3$ 5 wt%) 타겟을 사용하여 RF power 90 W, 공정압력 5 mTorr, Ar gas 20 sccm, 기판거리 5 cm, 박막두께 500nm, 상온의 조건으로 GZO 박막을 증착 하였다. Polyimide 기판에 $O_2$ 플라즈마 처리를 하지 않고 증착한 GZO 박막의 비저황은 $1.02\times10^{-2}\Omega$-cm 이었고 RF power 100W, 처리시간 120 초로 $O_2$ 플라즈마 처리 후에 증착한 GZO 박막의 비저항이 $1.89\times10^{-3}\Omega$-cm인 최적의 값이 측정되었으며 RF power가 증가할수록 투과도는 감소하였지만 처리시간의 변화에 따라서는 투과도 변화가 거의 없었다.

  • PDF

Electrical and Optical Properties of Ga-doped ZnO Thin Films Deposited at Different Process Pressures by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제작된 Ga-doped ZnO 박막의 공정압력에 따른 전기적, 광학적 특성)

  • Jeong, Seong-Jin;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • Ga-doped ZnO (GZO) thin films for application as transparent conducting oxide film were deposited on the glass substrate by using rf-magnetron sputtering system. The effects of working pressure on electrical and optical characteristics of GZO films were investigated. Regardless of the working pressure, all films were oriented along with the c-axis, perpendicular to the substrate. The electrical resistivity was about $8.68{\times}10^{-3}{\Omega}{\cdot}cm\sim2.18{\times}10^{-3}{\Omega}{\cdot}cm$ and the average transmittance of all films including substrates was over 90% in the visible range. The good transparents and conducting properties were obtained due to controle the working pressure. The obtained results have acceptable for application as transparent conductive electrodes in LCDs and solar cells.

The Electrical and Optical Properties of Ga-doped ZnO Films Prepared by Using Facing Target Sputtering System (대향 타겟식 스퍼터링 방법에 의해 성막된 Ga-doped ZnO 박막의 전기 광학적 성질)

  • Choi, Myung Gyu;Bae, Kang;Seo, Sung-Bo;Kim, Dong-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.385-390
    • /
    • 2013
  • $(Ga_2O_3)_x(ZnO)_{100-x}$ (GZO) films were prepared at room temperature by using a facing target sputtering (FTS) system and their electrical resistivites was investigated as a function of the $Ga_2O_3$ content. The GZO film with an atomic ratio of $Ga_2O_3$ of x= 7 wt.%, shows the lowest resistivity of $7.5{\times}10^{-4}{\Omega}{\cdot}cm$. The GZO films were also prepared at various substrate temperatures from room temperature to $300^{\circ}C$, and their electrical resistivity was found to be improved as the substrate temperature was increased, A very low resistivity of $2.8{\times}10^{-4}{\Omega}{\cdot}cm$ that is almost comparable with that of ITO film was obtained in the GZO films prepared at the substrate temperature of $300^{\circ}C$ by using the FTS.

Transparent ZnO thin film transistor with long channel length of 1mm (1mm의 채널을 갖는 ZnO 투명 박막 트랜지스터)

  • Lee, Choong-Hee;Ahn, Byung-Du;Oh, Sang-Hoon;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.34-35
    • /
    • 2006
  • Transparent ZnO thin film transistor (TFT) is fabricated on the glass substrates. The device consists of a high mobility intrinsic ZnO as a semiconductor active channel, Ga doped ZnO (GZO) as an electrode, $HfO_2$ as a gate insulator. GZO and $HfO_2$ layers are prepared by using a pulsed laser deposition and intrinsic ZnO layers are fabricated by using an rf-magnetron sputtering, respectively. The transparent TFT is highly transparent (> 87 %) and exhibits n-channel, enhancement mode behavior with a field-effect mobility as large as $11.7\;cm^2/Vs$ and a drain current on-to-off ratio of about $10^5$.

  • PDF

The Characteristics of Ga-doped ZnO Transparent Thin Films by using Multilayer (다층박막을 이용한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Bong-Seok;Lee, Kyu-Il;Kang, Hyun-Il;Lee, Tae-Yong;Oh, Su-Young;Lee, Jong-Hwan;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1044-1048
    • /
    • 2007
  • With development of electronic products the demands for miniaturization and weight-lightening have increased until a recent date. Accordingly, The effort to substitute glass substrates was widely made. However, polymer substrates have weak point that substrates were damaged at high temperature. In this paper, we deposited transparent conductive film at low temperature. And we inserted Au thin film between oxide to compensate for deteriorated electrical characteristics. Ga-doped ZnO(GZO) multilayer coatings were deposited on glass substrate by DC sputtering. The optimization of deposition conditions of both AZO and Au layers were performed to obtain better electrical and optical characteristics in advance. We presumed that the properties of multilayer were affected by the deposition process of both GZO and Au layers. The best multilayer coating exhibited the resistivity of $2.72{\times}10^{-3}\;{\Omega}-cm$ and transmittance of 77 %. From these results, we can confirm a possibility of the application as transparent conductive electrodes.

Influence of Post-deposition Annealing Temperature on the Properties of GZO/Al Thin Film (진공열처리 온도에 따른 GZO/Al 적층박막의 구조적, 전기적, 광학적 특성 변화)

  • Kim, Sun-Kyung;Kim, Seung-Hong;Kim, So-Young;Jeon, Jae-Hyun;Gong, Tae-Kyung;Yoon, DaeYoung;Choi, DongYong;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.81-85
    • /
    • 2014
  • Ga doped ZnO (GZO)/Al bi-layered films were deposited on the glass substrate by RF and DC magnetron sputtering and then vacuum annealed at different temperatures of 100, 200 and $300^{\circ}C$ for 30 minutes to consider the effects of annealing temperature on the structural, electrical and optical properties of the films. For all depositions, the thicknesses of the GZO and Al films were kept constant at 95 and 5 nm, respectively, by controlling the deposition time. As-deposited GZO/Al bi-layered films showed a relatively low optical transmittance of 62%, while the films annealed at $300^{\circ}C$ showed a higher transmittance of 81%, compared to the other films. In addition, the electrical resistivity of the films was influenced by annealing temperature and the lowest resistivity of $9.8{\times}10^{-4}{\Omega}cm$ was observed in the films annealed at $300^{\circ}C$. Due to the increased carrier mobility, 2.35 $cm^2V^{-1}S^{-1}$ of the films. From the experimental results, it can be concluded that increasing the annealing temperature enhanced the optical and electrical properties of the GZO/Al films.

Properties of ZnO:Ga Thin Film Fabricated on Polyimide Substrate by RF Magnetron Sputtering (폴리이미드 기판 위에 RF 마그네트론 스퍼터링 공정으로 증착된 ZnO:Ga 박막의 특성)

  • Park, Seung-Beum;Kim, Jeong-Yeon;Kim, Byeong-Guk;Lim, Jong-Youb;Yeo, In-Hwan;Ahn, Sang-Ki;Kweon, Soon-Yong;Park, Jae-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.374-378
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on polyimide substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the polyimide substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 120 sec, the resistivity of GZO films on the polyimide substrate was $1.90{\times}10^{-3}{\Omega}-cm$.

Al, Ga, In이 도핑된 ZnO 기반의 투명 전도막 제작

  • Kim, Gyeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.138-138
    • /
    • 2009
  • Al, Ga and In doped ZnO thin film were prepared by faing targets sputtering as a function of oxygen gas contents at R.T. Base pressure was $2{\times}10^{-6}torr$, and working pressure was 1mTorr. The properties of thin films on the electrical and optical properties of the deposited films were investigated by using a four-point probe (Chang-min), a Hall Effect measurement (Ecopia) and an UV/VIS spectrometer (HP). The minimum resistivities of AZO, GZO and IZO thin film were $6.5{times}10^{-4}[{\Omega}-cm],5.5{\times}10^{-4}[{\Omega}-cm]$ and $4.29{\times}10^{-4}[{\Omega}-cm]$. The average transmittance of over 80% was seen in the visible range.

  • PDF

Organic Acid-Based Wet Chemical Etching of Amorphous Ga-Doped Zinc Oxide Films on Glass and PET substrates

  • Lee, Dong-Kyoon;Lee, Seung-Jung;Bang, Jung-Sik;Park, Mun-Gi;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1408-1411
    • /
    • 2009
  • This paper describes organic acid-based wet chemical etching behaviors of amorphous Ga-doped zinc oxide (GZO) thin film sputter-deposited at low temperature (room temperature). Wet etch parameters such as etching time, temperature, and etchant concentration are investigated for formic and citric acid etchants, and their effects on the etch rate, etch residue and the feature of edge line are compared.

  • PDF

Properties of ZnO:Ga Thin Films Deposited by RF Magnetron Sputtering with Ar Gas Flows (RF 마그네트론 스퍼터링법으로 제조한 GZO 박막의 Ar 유량에 따른 특성)

  • Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.450-453
    • /
    • 2020
  • In this study, ZnO:Ga thin films were fabricated on a glass substrate using various Ar flows by an RF magnetron sputter system at room temperature. The dependencies of Ar flow on different properties were investigated. An appropriate control over the Ar flow led to the formation of a high-quality thin film. The ZnO:Ga films were formed as a hexagonal wurtzite structure with high (002) preferential orientation. The films exhibited a typical columnar microstructure and a smooth top face. The average transmittance was 85~89% within the visible area. By decreasing the Ar flow, the sheet resistance was decreased due to an increase in the grain size and a decrease in the root mean square roughness. The lowest sheet resistance of 86 Ω/□ was obtained at room temperature for the 40 sccm Ar flow.