DOI QR코드

DOI QR Code

Influence of Post-deposition Annealing Temperature on the Properties of GZO/Al Thin Film

진공열처리 온도에 따른 GZO/Al 적층박막의 구조적, 전기적, 광학적 특성 변화

  • Received : 2014.02.04
  • Accepted : 2014.04.03
  • Published : 2014.04.30

Abstract

Ga doped ZnO (GZO)/Al bi-layered films were deposited on the glass substrate by RF and DC magnetron sputtering and then vacuum annealed at different temperatures of 100, 200 and $300^{\circ}C$ for 30 minutes to consider the effects of annealing temperature on the structural, electrical and optical properties of the films. For all depositions, the thicknesses of the GZO and Al films were kept constant at 95 and 5 nm, respectively, by controlling the deposition time. As-deposited GZO/Al bi-layered films showed a relatively low optical transmittance of 62%, while the films annealed at $300^{\circ}C$ showed a higher transmittance of 81%, compared to the other films. In addition, the electrical resistivity of the films was influenced by annealing temperature and the lowest resistivity of $9.8{\times}10^{-4}{\Omega}cm$ was observed in the films annealed at $300^{\circ}C$. Due to the increased carrier mobility, 2.35 $cm^2V^{-1}S^{-1}$ of the films. From the experimental results, it can be concluded that increasing the annealing temperature enhanced the optical and electrical properties of the GZO/Al films.

Keywords

References

  1. K. T. R. Reddy, R. W. Miles, J. Cryst. Growth, 210 (2000) 516. https://doi.org/10.1016/S0022-0248(99)00868-4
  2. M. Yoshino, W. Wenas, K. Akahas, Jpn. J. Appl. Phys., 32 (1993) 726. https://doi.org/10.1143/JJAP.32.726
  3. L. J. Meng, M. P. Dos Santos, Thin Solid Films, 250 (1994) 26. https://doi.org/10.1016/0040-6090(94)90159-7
  4. D. E. Brodie, E. Dixon, Proc. 12th IEEE Photovoltaic Specialists Conf, New York, (1980) 468.
  5. C. Cheng, J. Ting, Thin Solid Films, 516 (2007) 203. https://doi.org/10.1016/j.tsf.2007.05.051
  6. F. Wu, L. Fang, Y. J. Pan, K. Zhou, H. B. Ruan, G. B. Liu, C. Y. Kong, Thin Solid Films, 520 (2011) 703. https://doi.org/10.1016/j.tsf.2011.04.147
  7. Y. Kim, S. Heo, H. Lee, Y. Lee, I. Kim, M. Kang, D. Choi, B. Lee, M. Kim, D. Kim, Appl. Surf. Sci., 258 (2012) 3903. https://doi.org/10.1016/j.apsusc.2011.12.057
  8. B. D. Cullity, Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, (1978) 102-121.
  9. G. Haacke, J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240
  10. S. Heo, Y. Lee, M. Lee, Y. Kim, Y. Kong, D. Kim, J. Kor. Soc. Heat Treat., 24 (2011) 338.
  11. S. Park, W. Lim, C. Lee, J. Natur. Sci., 18 (1999) 31.
  12. B. Kim, E. Kim, Y. Kim, J. Kor. Ceram. Soc., 43 (2006) 532. https://doi.org/10.4191/KCERS.2006.43.9.532
  13. D. Kim, Displays, 31 (2010) 155. https://doi.org/10.1016/j.displa.2010.05.002

Cited by

  1. Effect of Annealing Temperature on the Low Emissivity of TiO2/Ag/TiO2 Films vol.28, pp.3, 2015, https://doi.org/10.12656/jksht.2015.28.3.134