• Title/Summary/Keyword: GTA

Search Result 115, Processing Time 0.029 seconds

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

A study on the fracture toughness degradation in cryogenic structural material using single-specimen method (단일 시험편법에 의한 극저온용 구조재료의 파괴인성 저하에 관한 연구)

  • Kwon, Il-hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.343-351
    • /
    • 1998
  • This paper was investigated degradation of the fracture toughness caused by sensitizing heat-treatment of the cryogenic structural material JN1 base metal using unloading compliance method reported as useful a method in evaluating the elastic-plastic fracture toughness at cryogenic temperature. The specimens used in this paper were 20% side-grooved 0.5T-CT specimens which were machined in the JN1 base metal. Also, to investigate cryogenic fracture toughness of the fusion line region in the JN1 GTA weldments, it was also used 20% side-grooved 0.5T-CT specimens that was machined fusion line to located in the middle of the specimen. The cryogenic fracture toughness values of the JN1 base metal were significantly decreased with increasing the time and temperature of the heat treatment. The fracture toughness value obtained from the fusion line specimen was invalid, but it was lower value than that of the JN1 base metal. Especially, this value was approximately equal with that obtained from the JN1 650.deg. C-5h heat-treated material.

Effect of Heat Treatments on Welding Residual Stresses of AISI 4130 Steel (AISI 4130강의 용접잔류응력에 미치는 열처리의 영향)

  • 양영수;나석주;김원훈;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1982-1989
    • /
    • 1991
  • The effect of heat treatments were considered on the residual stress fields of AISI 4130 weldments. In experiments, various heat treatments such as preheating, postheating, stress relieve annealing and hardening treatment were carried out for the GTA weldments and the residual stress was measured by using the hole drilling method. The post weld heat treatment at 230.deg.C, which aimed mainly to prevent the possible weld cracking, was found to have only a negligible effect on the welding residual stress distribution, while the annealing treatment at 600.deg.C almost completely removes the residual stress. It was also revealed that the hardening treatment causes no further residual stresses in weldments.

Weldability of Type 444 Ferritic Stainless Steel GTA Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • The ferritic stainless steels are generally considered to have poor weldability compared with that of the austenitic stainless steels. However the primary advantages of ferritic stainless steels include lower material cost than the more commonly used austenitic stainless steels and a greater resistance to stress corrosion cracking. Thus, the weldability of ferritic stainless steels was investigated in this study. In concerning the weldability, Grain size measurement test, Erichsen test and Varestraint test were involved. full penetration welds were produced by autogeneous direct current straight polarity (DCSP) and pulsed currents gas tungsten arc welding (GIAW) and the effect of pulsed currents welding on the welds was compared to that of DCSP welding. The results showed that pulsed current was effective to refine grain size in the weld metal and the finest grain size was obtained at the frequency of 150Hz. In addition, the ductility of welds was lower than that of base metal. Finally, autogeneous type 444 welds were less susceptible to macro solidification cracks, but more sensitive to micro cracks; SEM/EDS analysis indicated that all the inclusions in the crack showed enrichment of Mn, Si, O and S.

  • PDF

A Study on the Analysis of Residual Stress in Weldment by Considering the Phase Transformation of Carbon Steel (상변태를 고려한 탄소강 용접부의 잔류응력 해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2001
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper suggests new analysis method to predict welding residual stress by considering solid phase transformation during welding process. Using the method, analysis is performed for medium and low carbon steel. The analysis result for medium carbon steel reveals that case considering phase transformation has compressive residual stress in contrast with the case neglecting phase transformation because of martensite formation. However, for the case of low carbon steel, residual stress shows little difference between the case considering phase transformation and the other case, because it has small transformation strain and recovers rapidly stress after phase transformation.

Variable Polarity Arc Welding of Aluminum Thin Plate (가변 극성을 이용한 박판 알루미늄 아크 용접)

  • Cho, Jungho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.89-93
    • /
    • 2014
  • Variable polarity (VP) arc welding is known as an effective solution for aluminum thanks to the cleaning effect, which means oxide removal, during the DCEP (direct current electrode positive) period. In this research, VP GTAW (gas tungsten arc welding) is adopted for lap joint fillet welding of 3mm thickness 5052 aluminum alloy. Various welding currents and DCEP duty cycles are applied as welding conditions with a fixed welding speed to investigate the influence of DCEP characteristics on weld bead formation. Results show a tendency of higher heat input for higher DCEP duty cycle, which result does not follow conventional arc theory because it is known that DCEN (DC electrode negative) polarity is more efficient for heat input than is DCEP. This phenomenonhas recently been reported by several VP-GTA researchers and is still controversial because the mechanism of oxide removal is not yet clear except for the previous, well-known idea of "ion bombardment", which cannot explain the situation. Finally, proper usage conditions for VP-GTAW are suggested; then, further, related theoretical topics in the field of cathode physics are brieflyintroduced.

Structures and Defects in Welds of High Strengths Al Alloys by Using GTAW (GTAW에 의한 Al 합금 용접부의 조직 및 결합에 대한 연구)

  • 하려선;정병호;박화순
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.540-546
    • /
    • 2003
  • Recently Al alloys are being used gradually for structural materials of transports. In welding of Al alloys used for transports, good weldabilities as well as adequate mechanical properties of the welds should be ensured as structural materials. In this study, the welds formation, macro and microstructural characteristics, generation of defects and hardness distribution in welds of Al alloys of 5083, 6N01 and 7N01 by DCSP- and AC-GTA welding process, were investigated. The deeper penetration was obtained in all welds of the alloys by DCSP-GTAW with He gas, compared with those by using AC-GTAW. The 6N01 alloy showed high susceptibilities to solidification cracking in weld metal and liquation cracking in HAZ of the welding beads of both DCSP- and AC-GTAW process. The cracking ratio of 6N01 alloy was increased with increasing of welding current. The porosity ratios in weld metal of all alloys used were extremely low including all welding conditions of DCSP-GTAW. However, in AC-GTAW process, the porosity ratios of the welds using Ar gas showed much higher values than those using He gas.

Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint (맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정)

  • Yun, Seok-Chul;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

Numerical Modeling on Microsegregation with Tip-undercooling in Weld Metal of Binary Alloys (과냉을 고려한 2원계합금 용접용융부의 미시편적 거동에 대한 수치해석 모델링)

  • 박종민;박준민;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.60-68
    • /
    • 1999
  • The previously developed two dimensional model was modified in order to predict more accurately the degree of microsegregation and eutectic fraction on in weld metal whose solidification rate is very fast. The model employed the same assumptions with previous model but considered of a tip undercooling. The previously predicted microsegregation and eutectic fraction has the discrepancies between simulated and examined results in the weld metal solidification. The experiments for the weld metal solidification of 2024 A1 and Fe-Ni alloy were carried out in order to examine the reasonability and feasibility of this modified model. The concentration profile of the solute and eutectic fraction predicted by the simulation agreed well with those found from experimental works. According to the results, it was believed that the dendrite tip undercooling considered in the modified model be reasonable for predicting the degree of microsegregation more accurately in weld metla solidification. In the GTA welds, degree of dendrite-tip undercooling increases with increasing solidification rage(welding speed). This serves to increase the concentration of dendrite core and thus result in reducing the degree of segregation. And solid state diffusion(back diffusion) during solidification is very low in the weld metal solidification so that little additional homogenization of solute occurs during solidification. With consideration of tip undercooling this modified model can predict exactly degree of microsegregation and eutectic fraction from slow solidification(casting) to fast solidification(welding).

  • PDF

Effect of σ-phase on Intergranular Corrosion of Super Duplex Stainless Steel Weld Metal (슈퍼듀플렉스강 용접금속의 입계부식에 미치는 σ 상의 영향)

  • Lee, Jae-Hyoung;Jung, Byong-Ho;Seo, Gi-Jeong;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.293-299
    • /
    • 2013
  • A specimen of weld metal was prepared by GTA welding with weld wire of super duplex stainless steel. Aging treatment was conducted for the sample at the temperature range of 700 to $900^{\circ}C$ for 5 to 300 minutes. The effect of volume fraction of ${\sigma}$-phase to intergranular corrosion of weld metal has been investigated and the results were derived as follows. The volume fraction of ${\sigma}$ phase tends to increase with an increase of aging temperature and time and intergranular corrosion of weld metal was increased by an increase of ${\sigma}$ phase. Degree of sensitization representing intergranular corrosion was found to tend to increase with an increase of aging time at 700 to $800^{\circ}C$, while it decreased by an increase of aging time at $900^{\circ}C$.