• 제목/요약/키워드: GST polymorphisms

검색결과 46건 처리시간 0.026초

Study on the Relationship between Polymorphisms in Glutathione S-transferase and Ischemic Cerebrovascular Disease

  • Han Sang-Hyuk;Park Sae-Wook;Shin Yong-Il;Cho Kwang-Ho;Moon Byung-Soon
    • 대한한의학회지
    • /
    • 제25권4호
    • /
    • pp.36-42
    • /
    • 2004
  • Objective : Glutathione S-transferase polymorphism (GST) were examined in 120 cases with ischemic cerebrovascular disease (ICVD) to test the hyperthesis that GST polymorphisms confer a risk to an individual to develop ICVD. Tobacco smoking is a major cause of both cancer and vascular disease. Methods : therefore We were stratified the subjects with ICVD for smoking status, and then examined whether polymorphisms in this detoxification enzyme gene, GST, influence risk of ICVD Results : Neither GSTM1 nor GSTT1 genotypes in the ICVD group was significantly different from the control group (n=207), even in smokers. We attempted the combined analyses for GSTM1 and GSTT1 genotypes in ICVD for smoking status. No significant association observed between the combined genotypes and ICVD Conclusion : Our observation do not confirm the effect of the GSTM1 and GSTT1 genotypes as a risk factor for ICVD, even in smokers.

  • PDF

글루타티온 S-전환효소 다형성과 뇌혈관질환(腦血管疾患) 및 사상체질 사이의 연관성(聯關性)에 관한 연구 (Interrelationships among Glutathione S-Transferase Polymorphisms, Cerebrovascular Disease and Sasang Constitution)

  • 김종관;한병삼;김경요;고기덕;옥윤영
    • 사상체질의학회지
    • /
    • 제14권1호
    • /
    • pp.123-131
    • /
    • 2002
  • Glutathione S-transferase polymorphisms (GST) were examined in 98 cases with cerebrovascular disease (CVD) to test the hypothesis that GST polymorphisms confer a risk to an individual to develop CVD. Tobacco smoke is a major cause of both cancer and vascular disease. We therefore were stratified the subjects with CVD for smoking status, and then examined whether polymorphisms in this detoxification enzyme gene, GST, influence risk of CVD. Neither GSTM1 nor GSTT1 genotypes in the CVD group was significantly different from the control group (n=230), even in smokers. We attempted the combined analyses for GSTM1 and GSTT1 genotypes in CVD for smoking status. No significant association observed between the combined genotypes and CVD. We also classified the subjects and control group into four types according to Sasang Constitutional Medicine, Korean Traditional Oriental Medicine, and investigated the association among GST genotypes, CVD, and Sasang constitutional classification. Our observations do not confirm the effect of the GSTM1 and GSTT1 genotypes as a risk factor for CVD, even in smokers. Furthermore, we first attempted to evaluate the efficacy of Sasang Constitutional Medicine, and to find an association with CVD.

  • PDF

Glutathione S-transferase polymorphisms and traditional classification in Korean population with cerebrovascular disease

  • Um, Jae-Young;Ok, Yoon-Young;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Na-Hyung;Hong, Seung-Heon;Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • 제4권2호
    • /
    • pp.112-119
    • /
    • 2004
  • Glutathione S-transferase polymorphisms (GST) were examined in 98 cases with cerebrovascular disease (CVD) to test the hypothesis that GST polymorphisms confer a risk to an individual to develop CVD. Tobacco smoke is a major cause of both cancer and vascular disease. We therefore were stratified the subjects with CVD for smoking status, and then examined whether polymorphisms in this detoxification enzyme gene, GST, influence risk of CVD. Neither GSTM1 nor GSTT1 genotypes in the CVD group was significantly different from the control group (n=230), even in smokers. We attempted the combined analyses for GSTM1 and GSTT1 genotypes in CVD for smoking status. No significant association observed between the combined genotypes and CVD. We also classified the subjects and control group into four types according to Sasang Constitutional Medicine, Korean Traditional Oriental Medicine, and investigated the association among GST genotypes, CVD, and Sasang constitutional classification. Our observations do not confirm the effect of the GSTM1 and GSTT1 genotypes as a risk factor for CVD, even in smokers. Furthermore, we first attempted to evaluate the efficacy of Sasang Constitutional Medicine, and to find an association with CVD.

Glutathione S-transferase (GST) 유전자 다형성에 따른 우리나라 젊은 성인의 항산화 상태, DNA 손상 및 지질 양상 (Antioxidative Status, DNA Damage and Lipid Profiles in Korean Young Adults by Glutathione S-Transferase Polymorphisms)

  • 조혜련;이혜진;강명희
    • Journal of Nutrition and Health
    • /
    • 제44권1호
    • /
    • pp.16-28
    • /
    • 2011
  • Oxidative stress leads to the induction of cellular oxidative damage, which may cause adverse modifications of DNA, proteins, and lipids. The production of reactive species during oxidative stress contributes to the pathogenesis of many diseases. Antioxidant defenses can neutralize reactive oxygen species and protect against oxidative damage. The aim of this study was to assess the antioxidant status and the degree of DNA damage in Korean young adults using glutathione s-transferase (GST) polymorphisms. The GSTM1 and GSTT1 genotypes were characterized in 245 healthy young adults by smoking status, and their oxidative DNA damage in lymphocytes and antioxidant status were assessed by GST genotype. General characteristics were investigated by simple questionnaire. From the blood of the subjects, GST genotypes; degree of DNA damage in lymphocytes; the erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase; plasma concentrations of total peroxyl radical-trapping potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene and cryptoxanthin, as well as plasma lipid profiles, conjugated diene (CD), GOT, and GPT were analyzed. Of the 245 subjects studied, 23.2% were GSTM1 wild genotypes and 33.4% were GSTT1 wild genotype. No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and the plasma TRAP level, CD, GOT, and GPT levels were observed between smokers and non-smokers categorized by GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}$- and ${\gamma}$-tocopherol increased significantly in smokers with the GSTT1 wild genotype (p < 0.05); however, plasma level of ${\alpha}$-carotene decreased significantly in non-smokers with the GSTM1 wild genotype (p < 0.05). DNA damage assessed by the Comet assay was significantly higher in non-smokers with the GSTM1 genotype; whereas DNA damage was significantly lower in non-smokers with the GSTT1 genotype. Total cholesterol and LDL cholesterol levels were significantly higher in non-smokers with the GSTT1 genotype than those with the GSTT1 wild genotype (p < 0.05). In conclusion, the GSTM1 genotype or the GSTT1 wild genotype in non-smokers aggravated their antioxidant status through DNA damage of lymphocytes; however, the GSTT1 wild type in non-smokers had normal plasma total cholesterol and LDL-cholesterol levels. This finding confirms that GST polymorphisms could be an important determinant of antioxidant status and plasma lipid profiles in non-smoking young adults. Further study is necessary to clarify the antioxidant status and/or lipid profiles of smokers with the GST polymorphism and to conduct a study with significantly more subjects.

Glutathione S-Transferase (GST) 유전자 다형성과 항정신병약물로 유발된 하지불안증후군의 연관 연구 (Association between Antipsychotic-Induced Restless Legs Syndrome and Glutathione S-Transferase Gst-M1, Gst-T1 and Gst-P1 Gene Polymorphisms)

  • 강승걸;박영민;김린;이헌정
    • 수면정신생리
    • /
    • 제22권1호
    • /
    • pp.25-29
    • /
    • 2015
  • 목 적 : 하지불안증후군(restless legs syndrome ; RLS)의 병인은 아직 불명확하지만, 유전적 질환으로 알려져 있다. 산화스트레스는 RLS, 지연성운동장애, 파킨슨병, 뚜렛장애 등의 운동장애에서 주요한 원인 중의 하나로 생각되고 있다. 본 연구에서는 조현병환자에서 항정신병약물에 의해 유발된 RLS 증상이 산화손상의 해독효소인 glutathione S-transferase (GST) 유전자의 다형성과 연관이 있는지를 밝히고자 하였다. 방 법 : International Restless Legs Syndrome Study Group의 진단기준으로 190명의 한국인 조현병 환자들을 대상으로 RLS에 대해서 평가하였다. 유전자형분석은 중합효소연쇄반응기법을 사용하여 GST-M1, GST-T1, GST-P1의 세 가지 단일염기다형성(single nucleotide polymorphism, SNP)에 대해서 시행되었다. 결 과 : RLS 증상군 96명과 무증상군 94명으로 피험자들을 분류하였다. GST-M1 (${\chi}^2=3.56$, p = 0.059), GST-T1 (${\chi}^2=0.51$, p = 0.476), GST-P1 (${\chi}^2=0.57$, p = 0.821)의 유전자형 빈도에 두 군간에 통계적으로 유의한 차이가 없었다. 유전자형에 따른 RLS 척도의 점수도 GST-M1 (t = -1.54, p = 0.125), GST-T1 (t = -0.02, p = 0.985), GST-P1 (F = 0.58, p = 0.560)의 세 가지 SNP에서 통계적으로 유의한 차이를 보이지 않았다. 결 론 : 본 연구의 결과 GST 유전자 다형성이 항정신병약물로 유발된 RLS 증상 발생의 민감성을 증가시킨다는 증거는 발견할 수 없었다. 산화손상과 관련된 다른 후보 유전자들에 대한 향후 연구가 필요할 것으로 사료된다.

아시아인종에서 만성골수성백혈병과 Glutathione S-transferase 유전자 다형성의 메타분석 (Association between the Polymorphism of Glutathione S-transferase Genes and Chronic Myeloid Leukemia in Asian Population: a Meta-analysis)

  • 김희성
    • 한국콘텐츠학회논문지
    • /
    • 제17권10호
    • /
    • pp.289-299
    • /
    • 2017
  • 아시아인종에서 만성골수성백혈병 (Chronic myeloid leukemia; CML)과 Glutathione S-transferase(GST) 유전자 다형성과 관련된 감수성을 검증하기 위해, 2017년 7월까지 발표된 9편의 논문들을 메타분석에 인용하였다. GST 유전자 다형성의 아형 중 M1 (GSTM1)과 T1 (GSTT1)의 유전자의 null, present 유형을 개별적으로 분석하였다. CML환자와 GST 유전자 다형성 사이에 연관성이 발견되었다.(GSTM1; OR=1.306, 95% CI=1.091-1.563, p=0.004, GSTT1; OR=1.987, 95% CI=1.438-2.746, p=0.000). 또한, CML 환자와 GSTM1-GSTT1 유전자 다형성 조합 null 유형의 연관성이 있었다(OR=4.191, 95% CI=2.833-6.201, p=0.000). 이와 같이, 아시아인종에서 GSTM1 유전자 다형성, GSTT1 유전자 다형성, GSTM1-GSTT1 유전자 다형성 조합은 CML 환자의 위험인자가 될 수 있다.

The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kim, Tae-Seok;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.49-56
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS: 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS: Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS: These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

흡연 여부에 따른 Glutathione S-transferase (GST) M1 및 T1 유전자 다형성이 우리나라 젊은 성인의 임파구 DNA 손상과 항산화 영양상태 지표들 간의 관련성에 미치는 영향 (Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults)

  • 한정화;이혜진;강명희
    • Journal of Nutrition and Health
    • /
    • 제44권5호
    • /
    • pp.366-377
    • /
    • 2011
  • Glutathione S-transferase (GST) is a multigene family of phase II detoxifying enzymes that metabolize a wide range of exogenous and endogenous electrophilic compounds. GSTM1 and GSTT1 gene polymorphisms may account for inter-individual variability in coping with oxidative stress. We investigated the relationships between the level of lymphocyte DNA and antioxidative parameters and the effect on GST genotypes. GSTM1 and GSTT1 were characterized in 301 young healthy Korean adults and compared with oxidative stress parameters such as the level of lymphocyte DNA, plasma antioxidant vitamins, and erythrocyte antioxidant enzymes in smokers and non smokers. GST genotype, degree of DNA damage in lymphocytes, erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px), and plasma concentrations of total radical-trapping antioxidant potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene, and cryptoxanthin were analyzed. Lymphocyte DNA damage assessed by the comet assay was higher in smokers than that in non-smokers, but the levels of plasma vitamin C, ${\beta}$-carotene, TRAP, erythrocyte catalase, and GSH-Px were lower than those of non-smokers (p < 0.05). Lymphocyte DNA damage was higher in subjects with the GSTM1- or GSTT1-present genotype than those with the GSTM1-present or GSTT1- genotype. No difference in erythrocyte antioxidant enzyme activities, plasma TRAP, or vitamin levels was observed in subjects with the GSTM1 or GSTT1 genotypes, except ${\beta}$-carotene. Significant negative correlations were observed between lymphocyte DNA damage and plasma levels of TRAP and erythrocyte activities of catalase and GSH-Px after adjusting for smoking pack-years. Negative correlations were observed between plasma vitamin C and lymphocyte DNA damage only in individuals with the GSTM1-present or GSTT1- genotype. The interesting finding was the significant positive correlations between lymphocyte DNA damage and plasma levels of ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. In conclusion, the GSTM1- and GSTT1-present genotypes as well as smoking aggravated antioxidant status through lymphocyte DNA damage. This finding confirms that GST polymorphisms could be important determinants of antioxidant status in young smoking and non-smoking adults. Consequently, the protective effect of supplemental antioxidants on DNA damage in individuals carrying the GSTM1- or GSTT1-present genotypes might show significantly higher values than expected.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2004년도 Annual Meeting and International Symposium
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Glutathione S-transferase T1, M1 and P1 Genetic Polymorphisms and Susceptibility to Colorectal Cancer in Turkey

  • Gorukmez, Ozlem;Yakut, Tahsin;Gorukmez, Orhan;Sag, Sebnem Ozemri;Topak, Ali;Sahinturk, Serdar;Kanat, Ozkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.3855-3859
    • /
    • 2016
  • Colorectal cancer (CRC) is reproted to be the third most common cancer worldwide and the fourth most common cause of cancer related deaths. CRC is considered to be a multifactorial disease whose risk varies due to the complex interaction between individual genetic basis and disposure to multiple endogenous factors. Glutathione S-transferases are pro-carcinogenic in CRC and are required for the conjugation between chemotherapeutics and broad spectrum xenobiotics. One hundred and eleven patients with CRC and 128 control subjects without any cancer history were enrolled in this study. Multiplex PCR was applied to determine polymorphisms for the GSTT1 and M1 genes, and PCR-RFLP was applied for the GSTP1 (Ile105Val) gene polymorphism. Values p<0.05 were defined as statistically significant. We detected a significant high correlation between predisposition for CRC and presence of the Ile/Ile genotype of the GSTP1 (IIe105Val) gene polymorphism, but we did not find a significant relationship between predisposition for CRC and GSTT1 and M1 deletion polymorphisms. In addition, we did not determine a relationship between GSTT1, M1 and P1 gene polymorphisms and any clinicopathological features of CRC. GSTT1 null/GSTM1 positive and GSTT1 null/GSTM1 positive/GSTP1 Ile/Ile genotypes were significantly higher in the patient group. Our results revealed that there is no relationship among CRC, its clinicopathologic features, and GSTT1 M1 gene polymorphisms. However, there was a significant correlation between CRC and the GSTP1 Ile/Ile genotype. Further studies with larger patient groups are required to delineate the relationships between GST gene polymorphisms and the clinicopathologic features of CRC in Turkey.