• Title/Summary/Keyword: GSH peroxidase

Search Result 404, Processing Time 0.02 seconds

Effect of Water Extract of Green tea, Persimmon Leaf and Safflower Seed on Heme Synthesis and Erythrocyte Antioxidant Enzyme Activities in Lead-Administered Rats (납투여한 흰쥐의 헴합성과 적혈구 중의 항산화효소 활성에 미치는 녹차, 감잎, 홍화 열수추출물의 영향)

  • 김명주;조수열;장주연;박지윤;박은미;이미경;김덕진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.191-196
    • /
    • 2003
  • This study was performed to investigate the effect of water extract of green tea (GT), persimmon leaf (PL) and safflower seed (SS) on heme synthesis and erythrocyte antioxidant enzyme activities in lead (Pb)-administered rats. Male rats were divided into five groups. a normal, Pb-control (Pb-Con), Pb-GT, Pb-PL and Pb-55 groups with ten rats per group. Pb (25 mg/kg. BW) was orally administerd once a day for 4 weeks. The extract of GT, PL and 55 were administered based on 1.26 g of raw traditional tea/kg BW/day. Blood hematocrit, homoglobin level and red blood cell counts were significantly lower in rb-Con group than in normal group. However, the supplementation of GT, PL and 55 were effective to improve the hematological parameters. Plasma AST and ALT activities were significantly lower in Pb-GT, Pb-PL, Pb-SS groups than in Pb-Con group. The $\delta$ -amino-levulinic acid dehydratase (ALAD) activity of blood and liver were significantly lowered in Pb-Con group com-pared to those of the normal group. The ALAD activity in Pb administered rats was recovered to tile normal level by the water extract of GT, PL and 55 supplementation. Erythrocyte superoxide dismutase and catalse activities were significantly higher in Pb-Con group than in normal group, whereas glutathione peroxidase activity was lowered in Pb administered rats. The extract of GT, PL and SS supplement attenuated changes of these erythrocyte antioxidant enzyme activities by Pb intoxication.

Effect of Artemisia Capillaris Thunberg EtOH Ext. on Lowering Lipid, Anti-oxidation and Concentration of Plasma Inflammatory Mediators Using Rats Fed on High-oxidized Fat (인진호(茵蔯蒿) 추출물이 과산화지질 투여한 쥐의 지질강하, 항산화효과 및 염증매개물질의 생산에 미치는 영향)

  • Kong, In-Pyo;Lee, Eun;Cha, Yun-Yeop
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • Objectives : The present study investigated effects of Artemisia Capillaris Thunberg ethanol extract(EtOH ext). on lowering lipid, anti-oxidation and concentration of plasma inflammatory mediators using rat fed on high oxidized fat. Methods : We divided fat sprague-dawley rats fed on high oxidized into 4 groups. They were normal group, feed with 100 mg/kg Artemisia Capillaris Thunberg group, feed with 200 mg/kg Artemisia Capillaris Thunberg group and feed with 300 mg/kg Artemisia capilaris Thunberg group. They were administered for 4 weeks. We measured concentration of plasma free fatty acid(FFA), plasma triglyceride, plasma total cholesterol, and plasma low density lipoprotein-cholesterol(LDL-cholesterol), plasma high density lipoprotein-cholesterol(HDL-cholesterol), concentration of liver total cholesterol and liver triglyceride (TG), concentration of plasma thiobarbituric acid reactive substance(TBARS) and liver thiobarbituric acid reactive substance(TBARS), glutathione peroxidase (GSH-Px) activity, superoxide dismutase(SOD) activity and catalase(CAT) activity, plasma nitric oxide(NO), ceruloplasmin and ${\alpha}-glycoprotein$. Results : 1. The Artemisia Capillaris Thunberg EtOH ext. groups showed low concentration of plasma FFA, plasma triglyceride, plasma total cholesterol and plasma LDL-cholesterol compared to control group. However, concentration of plasma HDL-cholesterol was increased in the Artemisia Capillaris Thunberg EtOH ext. groups. 2. Concentration of liver total cholesterol and liver TG showed a significantly decrement in all Artemisia Capillaris Thunberg EtOH ext. groups than that of control group. 3. The Artemisia Capillaris Thunberg EtOH ext. groups showed lower values in concentration of plasma TBARS and liver TBARS than that of control group. The values of GSH-Px activity, SOD activity and CAT activity were increased in the Artemisia Capillaris Thunberg EtOH ext. groups. 4. The values of plasma NO, ceruloplasmin and ${\alpha}-glycoprotein$ were decreased in Artemisia Capillaris Thunberg EtOH ext. groups. Conclusions : Based on the results in this study, the Artemisia Capillaris Thunberg EtOH ext. showed a positive effect in lowering lipid, anti-oxidation and decrement of plasma inflammatory mediators.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Effect of Polysaccharides from Astragalus membranaceus on Exercise-Induced Fatigue and Oxidative Damage in Skeletal Muscle in Exhaustive Exercise Animal Models (과도 운동에 의해 유발되는 피로 및 골격근 산화적 손상에 대한 황기 다당체의 효과)

  • Go, Eun Ji;Lee, Hannah;Park, Hyun Su;Kim, Soo Jin;Park, Yeong Chul;Seong, Eun Soo;Yu, Chang Yeon;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.271-280
    • /
    • 2018
  • Background: Astragalus membranaceus is a well known oriental medicinal herb. The polysaccharides of the aboveground parts (AMA) and the radix (AMR) of A. membranaceus are the most important functional constituents. Methods and Results: The aim of this study was to determine the effects of AMA and AMR on the oxidative damage induced in the skeletal muscle of rats subjected to exhaustive exercise. Sprague-Dawley rats were randomly divided into exercise and non-exercise groups; in the groups receiving the test compounds, AMA and AMR were administered orally for 30 days. Skeletal muscle samples were collected from each rat after running to exhaustion on a treadmill to determine the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and the concentation of malondialdehyde (MDA). The antioxidant enzyme activities of SOD and GSH-Px of skeletal muscle of AMA- and AMR-treated groups were significantly higher than those of the control and commercial sports drink (SPD)-treated groups in exhaustive exercise rats. In addition, MDA concentrations in the skeletal muscle of the AMA- and AMR-treated groups were significantly lower than those of the control and SPD-treated groups. In the present study, the effects of AMA and AMR on exercise endurance capacity were also evaluated in mice subjected to a swimming exercise test. AMA and AMR supplementation prolonged the swimming time of mice and enhanced exercise endurance capacity. AMA and AMR possess the ability to retard and lower the production of blood lactate, and prevent the decrease of serum blood glucose. Conclusions: These results showed that, AMR and AMA exerted beneficial effect in mice, increasing the activity of the antioxidant systems and inhibiting oxidative stress induced by exhaustive exercise. The compounds improved exercise performance and showed anti-fatigue effects against exhaustive exercise.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells

  • Zhao, Xiao;Cui, Ya-Juan;Bai, Sha-Sha;Yang, Zhi-Jie;Cai, Miao;Megrous, Sarah;Aziz, Tariq;Sarwar, Abid;Li, Dong;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1163-1174
    • /
    • 2021
  • Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.

Cellular Aging Inhibitory Effect of Perilla Leaf Extract on D-Galactose Induced C2C12 Myoblasts (D-갈락토스 유도 C2C12 근원세포에 대한 자소엽 추출물의 세포 노화 억제 효과)

  • Song-Mi Park;Sung-Woo Cho;Yung-Hyun Choi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.15-28
    • /
    • 2024
  • Objectives We used the D-galactose (D-gal) induced C2C12 myoblast senescence model to investigate whether ethanol extract of Perilla. fructescens leaves (EEPF) could delay cellular senescence and regulate related mechanisms. Methods C2C12 myogenic cells were cultured in an incubator under 37 ℃ and 5% CO2 conditions. EEPF, dried perilla leaves were pulverized and extracted at 1:10 (v/v) at 50 ℃ for 4 hours. Cell counting kit-8 and western blot analysis was performed. Annexin V-FITC apoptosis detection kit and DAPI staining was applied. Catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde analysis kits were used. To measure the level of reactive oxygen species generation, staining and flow cytometry was used. To analyze the mitochondrial activity, membrane potential changes were measured using JC-1. 𝛽-gal activity was analyzed using SA-𝛽-gal staining solution, and DNA damage was analyzed by using 𝛾-H2AX. Quantikine ELISA kit was used to analyze inflammatory cytokine production. Results According to the results of this study, EEPF significantly alleviated the decrease in cell viability in C2C12 cells treated with D-gal and suppressed the decrease in the expression of proliferating cell nuclear antigen. EEPF also markedly blocked D-gal-induced C2C12 cell apoptosis and restored reduced activity of CAT, GSH-Px, T-AOC, SOD. In addition, EEPF suppressed the decrease in 𝛽-galactosidase activity, the induction of DNA damage and the increase in expression of senescence-associated secretory phenotype proteins such as p16, p53 and p21 in D-gal-treated C2C12 cells. Furthermore, EEPF significantly attenuated D-gal-induced production and expression of inflammatory cytokines such as interleukin (IL)-6 and IL-18. Conclusions The results of this study indicate that EEPF can be used as a potential candidate for the prevention and treatment of muscle aging.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Effect of Selenium Yeast on MPTP (1-methyl-4-phenyl-propion-oxypiperidine)-Induced Neurotoxicity in Mice (Selenium이 MPTP(1-methy-4-phenyl-1,2,3,6-tetrahydropyridine)에 의해 유도된 생쥐의 신경독성에 미치는 영향)

  • Kim Seck-Hwan;Lee Joo-Yeon;Kim Yeo-Jeong;Kang Hye-Ok;Lee Hang-Woo;Choi Jong-Won
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.266-273
    • /
    • 2006
  • This study is investigated the effect of selenium against neurotoxicity induced by MPTP(1-methy-4-phenyl-propion-oxypiperidine) in mice. In order to demonstrate neuroprotective activity of selenium, mice were administrated orally with selenium(25, 50, 100 ${\mu}g/kg$, once/day) for 10 days, and MPTP(10 mg/kg) was injected subcutaneously into the mice for 6 days from the beginning 1hr before selenium treatment. Test of rota road activity was inhibited by treatment with selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. Monoamine oxidase(MAO)-B activity and cerebral lipid peroxide content were significantly decreased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice and MAO-A was not affected. Activities of cerebral superoxide dismutase, catalase and glutathione peroxidase were significantly increased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. These results suggest that selenium might be estimated the result from the cooperative action of its inhibitory effect on monoamine oxidase-B with that of the enhancement of antioxidant(SOD, catalase, GSH-Px) defence ability.

Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism

  • Han, Jeong-Hwa;Lee, Hye-Jin;Choi, Hee Jeong;Yun, Kyung Eun;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS: We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure $(BP){\geq}130mmHg$ or diastolic $BP{\geq}85mmHg$) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS: Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}-tocopherol$ increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of ${\beta}-carotene$ increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS: These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest that GSTM1 null genotype leads to an increased oxidative stress compared with wild genotype.