• Title/Summary/Keyword: GROWTH-REGULATING FACTOR

Search Result 172, Processing Time 0.042 seconds

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size (배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Seung-Bum;Yoon, Hye-Jin;Lee, Yeon-Hee
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.378-386
    • /
    • 2018
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

Overexpression of Brassica rapa GROWTH-REGULATING FACTOR genes in Arabidopsis thaliana increases organ growth by enhancing cell proliferation

  • Hong, Joon Ki;Oh, Seon-Woo;Kim, Jeong Hoe;Lee, Seung Bum;Suh, Eun Jung;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors containing two conserved QLQ and WRC domains and play critical roles in regulating the growth and development of lateral organs, such as cotyledons, leaves, and flowers. To explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), the researchers isolated seven BrGRFs (BrGRF3-1, 3-2, 5, 7, 8-1, 8-2, and 9) and constructed BrGRF-overexpressing Arabidopsis thaliana plants (BrGRF-OX). BrGRF-OX plants developed larger cotyledons, leaves, and flowers as well as longer roots than the wild type. The increase in size of these organs were due to increases in cell number, but not due to cell size. BrGRF-OX plants also had larger siliques and seeds. Furthermore, BrGRF-OX seeds produced more oil than the wild type. RT-PCR analysis revealed that BrGRFs regulated expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, the data indicates that BrGRFs act as positive regulators of plant growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed oil production.

Saxatilin Suppresses Tumor-induced Angiogenesis by Regulating VEGF Expression in NCI-H460 Human Lung Cancer Cells

  • Jang, Yoon-Jung;Kim, Dong-Seok;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.439-443
    • /
    • 2007
  • Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1$\alpha$ (HIF-1$\alpha$) expression via the Akt pathway.

Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes

  • Park, Jinryong;Lee, Jeongeun;Song, Ki-Duk;Kim, Sung-Jo;Kim, Dae Cheol;Lee, Sang Cheol;Son, Young June;Choi, Hyun Woo;Shim, Kwanseob
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1392-1402
    • /
    • 2021
  • Objective: The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. Methods: Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. Results: We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. Conclusion: Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.

EGF, IGF-I, VEGF and CSF2: Effects on Trophectoderm of Porcine Conceptus

  • Jeong, Wooyoung;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • The majority of early embryonic mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Our research group has presented evidence for promising growth factors affecting cellular activities of primary porcine trophectoderm (pTr) cells, and we have identified potential intracellular signaling pathways responsible for the activities induced by these factors. Therefore, this review focuses on promising growth factors at the maternal-conceptus interface regulating the development of the porcine conceptus and playing pivotal roles in implantation events during early pregnancy in pigs.

BolA Affects Cell Growth, and Binds to the Promoters of Penicillin-Binding Proteins 5 and 6 and Regulates Their Expression

  • Guinote, Ines Batista;Matos, Rute Goncalves;Freire, Patrick;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • The gene bolA was discovered in the 80's, but unraveling its function in the cell has proven to be a complex task. The BolA protein has pleiotropic effects over cell physiology, altering growth and morphology, inducing biofilm formation, and regulating the balance of several membrane proteins. Recently, BolA was shown to be a transcription factor by repressing the expression of the mreB gene. The present report shows that BolA is a transcriptional regulator of the dacA and dacC genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby demonstrating the versatility of BolA as a cellular regulator. In this work, we also demonstrate that reduction of cell growth and survival can be connected to the overexpression of the bolA gene in different E. coli backgrounds, particularly in the exponential growth phase. The most interesting finding is that overproduction of BolA affects bacterial growth differently depending on whether the cells were inoculated directly from a plate culture or from an overnight batch culture. This strengthens the idea that BolA can be engaged in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions.

Spatial Distribution of Bacterial Abundance and Production in the Saemangeum Area (새만금 주변 해역에서 박테리아 개체수 및 생산력의 공간 분포)

  • Choi, Dong-Han;Noh, Jae-Hoon
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.509-518
    • /
    • 2008
  • Distribution of bacterial abundance and production was investigated in seawater around Saemangeum dike 7 times during March, $2007{\sim}July$, 2008. In the inner area of the dike, salinity variation was great due to river runoff from Mangyung and Dongjin Rivers and high chlorophyll a (chl a) concentrations up to $124.3{\mu}g\;l^{-1}$ was found. In the outer area of the dike, salinity was higher than in the inner area of the dike, and chl a was lower up to 10 times than in the inner area of the dike. Thus, the area of Saemangeum showed meso- to hypereutrophic conditions. Bacterial abundance and production ranged from 0.3 to $4.3{\times}10^9\;cells\;l^{-1}$ and from 5.2 to $570 pmol\;l^{-1}h^{-1}$ in outer area of the dike, respectively, while in the inner area of the dike bacterial abundance and production was 3 to 4 times higher ($0.4{\sim}12.7{\times}10^9\;cells\;l^{-1}$ and $12.3{\sim}1309\;pmol\;l^{-1}h^{-1}$, respectively) than those in the outer area. In both areas, bacterial abudance and production was highest in summer and lowest in winter. However, the variations of bacterial parameters was very large in each season. These large variations seemed to be related with the supply of organic matter. Bacterial abundance and production showed significant negative correlations with salinity in the inner area, suggesting that allochthonous organic matter input by river runoff could be an important factor in regulating the distribution of bacterial abundance and production. In addition, bacterial production also correlated positively with chl a in the inner area, suggesting that autochthonous substrate might be another regulating factor of bacterial growth in the area. These results suggest that the supply of both allochthonous organic substrates introduced by river runoff and autochthonous substrates produced by phytoplankon could be important in regulating bacterial growth and utilization of organic matter in the area. Thus, to manage water quality in the inner area of dike, it seems to be important to lower the load of both organic and inorganic nutrients from adjacent rivers.

Effects of Epidermal Growth Factor and Insulin-like Growth Factor-I on Placental Amino Acids Transport Activities in Rats

  • Ono, Kenichiro
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.34-36
    • /
    • 2002
  • Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) have been shown to stimulate proliferation and differentiation of various somatic cells, including placental trophoblasts and also to enhance fetal growth and development when maternally administered. Since an increase of the expression of placental EGF and IGF-I receptors in rat, mouse, and human with the gestation advanced, both EGF and IGF-I were considered to play pivotal roles on fetal growth by regulating some function of placental cells. Amino acids are crucial importance for both maternal and fetal requirements of energy source and essential constituent of fetal mass during pregnancy. Impaired fetal and placental uptake of amino acids has been observed in several models of growth retardation in the rat. Amino acid is concentrated in the fetal side through active transport by amino acid transporters and is one of the important metabolic fuels for the fatal growth. Therefore, at first plasma amino acid concentrations in mothers and fetuses were measured as an index of uphill transport across the placenta associated with EGF and IGF-1. The EGF administration at the concentration of 0, 0.1, or 0.2 $\mu\textrm{g}$/g to pregnant rats from day 18 to 21 of gestation apparently increased fetal/maternal ratio of serum proline concentration and also fatal growth in EGF dose-dependent manner. When IGF-I in doses of 0, 1, 2, and 4 $\mu\textrm{g}$/g were administrated, the ratio of leucine, isoleucine, tryptophan, phenylalanine, tyrosine and also fetal growth significantly increased with a dose-dependent manner. These results suggested that EGF and IGF-I enhanced fatal growth by, as one of its possible mechanisms, promoting placental activity to transfer some amino acid supplies from the mother to the fetus in late pregnancy.

  • PDF

Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating β-catenin and Snail

  • Kim, Joo-Hyun;Park, Seoyoung;Chung, Hyewon;Oh, Sangtaek
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.525-530
    • /
    • 2015
  • Activation of the Wnt/β-catenin pathway plays a pathogenic role in age-related macular degeneration (AMD) and is thus a potential target for the development of therapeutics for this disease. Here, we demonstrated that Wnt5a antagonized β-catenin response transcription (CRT) induced with Wnt3a by promoting β-catenin phosphorylation at Ser33/Ser37/Thr41 and its subsequent degradation in human retinal pigment epithelial (RPE) cells. Wnt5a decreased the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-α(TNF-α), and nuclear factor-κB (NF-κB), which was up-regulated by Wnt3a. Furthermore, Wnt5a increased E-cadherin expression and decreased cell migration by down-regulating Snail expression, thereby abrogating the Wnt3a-induced epithelial-mesenchymal transition (EMT) in human RPE cells. Our findings suggest that Wnt5a suppresses the pathogenic effects of canonical Wnt signaling in human RPE cells by promoting β-catenin phosphorylation and degradation. Therefore, Wnt5a has significant therapeutic potential for the treatment of AMD. [BMB Reports 2015; 48(9): 525-530]