DOI QR코드

DOI QR Code

BolA Affects Cell Growth, and Binds to the Promoters of Penicillin-Binding Proteins 5 and 6 and Regulates Their Expression

  • Received : 2010.09.27
  • Accepted : 2010.12.10
  • Published : 2011.03.28

Abstract

The gene bolA was discovered in the 80's, but unraveling its function in the cell has proven to be a complex task. The BolA protein has pleiotropic effects over cell physiology, altering growth and morphology, inducing biofilm formation, and regulating the balance of several membrane proteins. Recently, BolA was shown to be a transcription factor by repressing the expression of the mreB gene. The present report shows that BolA is a transcriptional regulator of the dacA and dacC genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby demonstrating the versatility of BolA as a cellular regulator. In this work, we also demonstrate that reduction of cell growth and survival can be connected to the overexpression of the bolA gene in different E. coli backgrounds, particularly in the exponential growth phase. The most interesting finding is that overproduction of BolA affects bacterial growth differently depending on whether the cells were inoculated directly from a plate culture or from an overnight batch culture. This strengthens the idea that BolA can be engaged in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions.

Keywords

References

  1. Aldea, M., T. Garrido, C. Hernandez-Chico, M. Vicente, and S. R. Kushner. 1989. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J. 8: 3923-3931.
  2. Aldea, M., T. Garrido, J. Pla, and M. Vicente. 1990. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J. 9: 3787-3794.
  3. Aldea, M., C. Hernandez-Chico, A. G. de la Campa, S. R. Kushner, and M. Vicente. 1988. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 170: 5169-5176. https://doi.org/10.1128/jb.170.11.5169-5176.1988
  4. Bachmann, B. J. and K. B. Low. 1980. Linkage map of Escherichia coli K-12, edition 6. Microbiol. Rev. 44: 1-56.
  5. Barbas, A., R. G. Matos, M. Amblar, E. Lopez-Vinas, P. Gomez-Puertas, and C. M. Arraiano. 2008. New insights into the mechanism of RNA degradation by ribonuclease II: Identification of the residue responsible for setting the RNase II end product. J. Biol. Chem. 283: 13070-13076. https://doi.org/10.1074/jbc.M709989200
  6. Broome-Smith, J. K. 1985. Construction of a mutant of Eschrichia coli that has deletions of both the penicillin-binding protein 5 and 6 genes. J. Gen. Microbiol. 131: 2115-2118.
  7. Broome-Smith, J. K. and B. G. Spratt. 1982. Deletion of the penicillin-binding protein 6 gene of Escherichia coli. J. Bacteriol. 152: 904-906.
  8. Buchanan, C. E. and M. O. Sowell. 1982. Synthesis of penicillinbinding protein 6 by stationary-phase Escherichia coli. J. Bacteriol. 151: 491-494.
  9. Freire, P., J. D. Amaral, J. M. Santos, and C. M. Arraiano. 2006. Adaptation to carbon starvation: RNase III ensures normal expression levels of bolA1p mRNA and sigma(S). Biochimie 88: 341-346. https://doi.org/10.1016/j.biochi.2005.09.004
  10. Freire, P., R. N. Moreira, and C. M. Arraiano. 2009. BolA inhibits cell elongation and regulates MreB expression levels. J. Mol. Biol. 385: 1345-1351. https://doi.org/10.1016/j.jmb.2008.12.026
  11. Freire, P., H. L. Vieira, A. R. Furtado, M. A. de Pedro, and C. M. Arraiano. 2006. Effect of the morphogene bolA on the permeability of the Escherichia coli outer membrane. FEMS Microbiol. Lett. 260: 106-111. https://doi.org/10.1111/j.1574-6968.2006.00307.x
  12. Jones, L. J., R. Carballido-Lopez, and J. Errington. 2001. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis. Cell 104: 913-922. https://doi.org/10.1016/S0092-8674(01)00287-2
  13. Kim, M. J., H. S. Kim, J. K. Lee, C. B. Lee, and S. D. Park. 2002. Regulation of septation and cytokinesis during resumption of cell division requires uvi31+, a UV-inducible gene of fission yeast. Mol. Cells 14: 425-430.
  14. Lange, R. and R. Hengge-Aronis. 1991. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J. Bacteriol. 173: 4474-4481. https://doi.org/10.1128/jb.173.14.4474-4481.1991
  15. Markiewicz, Z., J. K. Broome-Smith, U. Schwarz, and B. G. Spratt. 1982. Spherical E. coli due to elevated levels of Dalanine carboxypeptidase. Nature 297: 702-704. https://doi.org/10.1038/297702a0
  16. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  17. Nelson, D. E. and K. D. Young. 2001. Contributions of PBP 5 and DD-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J. Bacteriol. 183: 3055-3064. https://doi.org/10.1128/JB.183.10.3055-3064.2001
  18. Sambrook, J., T. Maniatis, and E. F. Fritsch. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  19. Santos, J. M., P. Freire, M. Vicente, and C. M. Arraiano. 1999. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol. Microbiol. 32: 789-798. https://doi.org/10.1046/j.1365-2958.1999.01397.x
  20. Santos, J. M., M. Lobo, A. P. Matos, M. A. De Pedro, and C. M. Arraiano. 2002. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol. Microbiol. 45: 1729-1740. https://doi.org/10.1046/j.1365-2958.2002.03131.x
  21. Spratt, B. G. 1980. Deletion of the penicillin-binding protein 5 gene of Escherichia coli. J. Bacteriol. 144: 1190-1192.
  22. van den Ent, F., L. A. Amos, and J. Lowe. 2001. Prokaryotic origin of the actin cytoskeleton. Nature 413: 39-44. https://doi.org/10.1038/35092500
  23. Vieira, H. L., P. Freire, and C. M. Arraiano. 2004. Effect of Escherichia coli morphogene bolA on biofilms. Appl. Environ. Microbiol. 70: 5682-5684. https://doi.org/10.1128/AEM.70.9.5682-5684.2004

Cited by

  1. Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen Ehrlichia chaffeensis vol.82, pp.5, 2011, https://doi.org/10.1111/j.1365-2958.2011.07885.x
  2. Characterization of the BolA Homolog IbaG: A New Gene Involved in Acid Resistance vol.22, pp.4, 2011, https://doi.org/10.4014/jmb.1107.07037
  3. A BolA‐like morphogene from the alga Chlamydomonas reinhardtii changes morphology and induces biofilm formation in Escherichia coli vol.339, pp.1, 2013, https://doi.org/10.1111/1574-6968.12051
  4. Putative roles of glutaredoxin-BolA holo-heterodimers in plants vol.9, pp.5, 2011, https://doi.org/10.4161/psb.28564
  5. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon vol.93, pp.1, 2011, https://doi.org/10.1111/mmi.12649
  6. Breaking through the stress barrier: the role of BolA in Gram-negative survival vol.30, pp.10, 2011, https://doi.org/10.1007/s11274-014-1702-4
  7. BolA Is a Transcriptional Switch That Turns Off Motility and Turns On Biofilm Development vol.6, pp.1, 2011, https://doi.org/10.1128/mbio.02352-14
  8. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation vol.8, pp.5, 2011, https://doi.org/10.1128/mbio.00443-17
  9. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance vol.67, pp.1, 2011, https://doi.org/10.1099/jmm.0.000636
  10. Characterization of putative DD-carboxypeptidase-encoding genes in Mycobacterium smegmatis vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-41001-x
  11. A Vibrio cholerae BolA-Like Protein Is Required for Proper Cell Shape and Cell Envelope Integrity vol.10, pp.4, 2011, https://doi.org/10.1128/mbio.00790-19
  12. Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes vol.11, pp.1, 2011, https://doi.org/10.3390/genes11010052
  13. DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus vol.11, pp.None, 2011, https://doi.org/10.3389/fmicb.2020.00542
  14. Development of an Autoinducible Plasmid for Recombinant Protein Production vol.28, pp.None, 2021, https://doi.org/10.2174/0929866528666211105113750
  15. Phosphorylation status of BolA affects its role in transcription and biofilm development vol.288, pp.3, 2011, https://doi.org/10.1111/febs.15447
  16. Preventing Biofilm Formation and Development on Ear, Nose and Throat Medical Devices vol.9, pp.8, 2011, https://doi.org/10.3390/biomedicines9081025