• 제목/요약/키워드: GRF(Ground Reaction Force)

검색결과 119건 처리시간 0.033초

시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향 (Effects of Visual Information Blockage on Landing Strategy during Drop Landing)

  • 고영철;조준행;문곤성;이해동;이성철
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

Analyses of Plantar Foot Pressure and Static Balance According to the Type of Insole in the Elderly

  • Bae, Kang-Ho;Shin, Jin-Hyung;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Park, Seung-Bum
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.115-126
    • /
    • 2016
  • Objective: The purpose of this study was to investigate plantar foot pressure and static balance according to the type of insole in the elderly. Methods: Thirteen elderly (mean age: $67.08{\pm}2.25years$, mean height: $159.63{\pm}9.64cm$, mean body weight: $61.48{\pm}9.06kg$) who had no previous injury experience in the lower limbs and a normal gait pattern participated in this study. Three models of insoles of the normal, 3D, and triangle types were selected for the test. The Pedar-X system and Pedar-X insoles, 3.3 km/h of walking speed, and a compilation of 20 steps walking stages were used to analyze foot-pressure distribution. Static balance test was conducted using Gaitview AFA-50, and balance (opening eyes, closing eyes) was inspected for 20 s. One-way ANOVA was conducted to test the significance of the results with the three insoles. p-value of less than .05 was considered statistically significant. Results: The mean foot pressure under the forefoot regions was the lowest with the 3D insole during treadmill walking (p<.05). The mean value under the midfoot was the highest with the 3D insole (left: p<.05, right: p<.01). The mean value under the rearfoot was the lowest with the 3D insole (p<.001). The maximum foot pressure value under the foot regions was the lowest on both sides of the forefoot with the 3D insole. A statistically significant difference was seen only in the left foot (p<.01). The maximum value under the midfoot was the highest with the 3D insole (p<.001). No statistically significant difference was detected on the values under the rearfoot. In the case of vertical ground reaction force (GRF), statistically significant difference was seen only in the left side rearfoot (p<.01). However, static balance values (ENV, REC, RMS, Total Length, Sway velocity, and Length/ENV) did not show significant differences by the type of insole. Conclusion: These results show that functional insoles can decrease plantar pressure and GRF under the forefoot and rearfoot. Moreover, functional insoles can dislodge the overload of the rearfoot and forefoot to the midfoot. However, functional insoles do not affect the static balance in the elderly.

Depth Jump 시 하지 관절 상해에 관한 운동역학적 분석 (The analysis of lower extremities injury on depth jump)

  • 소재무;김윤지;이종희;서진희;정연옥;김광기
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.127-142
    • /
    • 2005
  • The purpose of this study was to analysis biomechanics of the lower extremities injury the heights(40cm, 60cm, 80cm) of jump box as performed depth jump motion by 6 females aerobic athletes and 6 non-experience females students. The event of depth jump were set to be drop, landing and jump. The depth jump motions on the force plate were filmed using a digital video cameras, and data were collected through the cinematography and force plate. On the basis of the results analyzed, the conclusions were drawn as follows: 1. The landing time of skill group was shorter than unskill group at 40cm, 60cm drop height during drop-landing-jump phase especially. The landing time of 60cm drop height was significant between two group(p<.05). 2. The peak GRF of sagittal and frontaI direction following drop height improve was variety pattern and the peak vertical force of 40cm drop height was significantly(p<.05). 3. The magnitude of peak passive force was not increase to change the drop height. 4. The peak passive forces was significant at 40cm drop height between two groups(p<.05)

산업용 로봇을 이용한 스포츠화의 운동역학특성 측정에 관한 연구 (Study on Measuring Mechanical Properties of Sport Shoes Using an Industrial Robot)

  • 이종년
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3833-3838
    • /
    • 2009
  • 본 논문은 산업용 로봇을 이용하여 운동화의 특성을 측정하는 측정장비를 소개한다. 여기서 사용된 로봇은 6관절의 퓨마타입 로봇(삼성전자의 FARA AT2 모델)을 인간의 보행 동작을 구현할 수 있도록 보완하였다. 보행 동작은 고속카메라로 분석한 후, 로봇 관절각들을 추출하여 동작구현에 사용한다. 3가지 종류의 경도 아웃솔(신발 겉창)로 만들어진 신발 시편을 준비하고, 이 로봇 시스템을 이용하여 걸음동작을 구현하여 신발에 따른 지면 충격력을 측정한다. 걸음동작에서 발생하는 발 앞축 부분을 굽히기 위해 요구되는 굽힘 모멘트의 측정과 걸음동작에서 발생하는 요동현상의 측정에 사용한다. 동일한 압축변형을 유지하도록 시스템을 설정하고, 신발을 측정한 결과 아웃솔의 경도에 따라 지면반력의 크기는 선형적으로 증가하는 추세가 관찰되었다. 또한 굽힘 모멘트와 요동현상 역시 아웃솔의 경도에 따라 선형적으로 증가하는 추세가 관찰되었다. 상기의 몇 가지 실험을 통하여, 본 로봇 시스템은 일관성 있는 실험결과를 제공하였으며, 따라서 산업용 로봇을 이용하여 신발의 유용한 특성 정보 도출이 가능하며, 추후 신발설계의 활용에 대한 가능성을 보여준다.

입체시력 감소가 장애물 보행에 미치는 영향 (Effects of induced stereoacuity reduction on obstacle crossing)

  • 우병훈;설정덕
    • 한국체육학회지인문사회과학편
    • /
    • 제54권5호
    • /
    • pp.829-840
    • /
    • 2015
  • 본 연구는 정상시를 가진 정상인을 대상으로 입체시 부족을 유발하여 장애물 보행 시 발생될 것으로 생각되는 하지관절의 운동 변화에 대한 운동학적 분석과 지면반력의 변화를 고찰하는 것이다. 본 연구의 대상자는 입체시 테스트를 거쳐 통과한 18명이 연구에 참여하였다(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). 3차원 동작분석 시스템과 지면반력기를 이용하여 분석한 결과는 다음과 같다. 보행속도는 장애물 보행 시 느리게 나타났다. 고관절 각변위는 대부분 보행구간에서 장애물 보행 시 굴곡이 크게 나타났다. 무릎관절 각변위는 모든 보행구간에서 장애물 보행 시 굴곡이 크게 일어났고, TO와 FC2에서 입체시 감소의 영향으로 굴곡이 크게 나타났다. 발목관절 각 변위는 FC2에서 장애물 보행 시 굴곡이 크게 나타났다. 몸통기울기는 MSt, TO, MSw에서 장애물 보행 시 신전이 크게 나타났다. 지면반력은 Fx 값(내외측힘)에서 차이가 나타나지 않았지만, Fy 값(전후힘)에서 좌우발 모두 장애물 보행 시 전방 최대힘(추진력)이 크게 나타났고, 후방 최대힘(제동력)은 오른발은 입체시부족 보행 시 크게 나타났으며, 왼발은 장애물 보행 시 크게 나타났다. Fz 값(수직힘)은 최대힘-1과 최대힘-2에서 좌우발 모두 장애물 보행 시 최대 힘이 크게 나타났고, 계곡힘에서 오른발은 입체시부족 보행이 정상시 보행보다 작은힘이 나타났다.

Effects of Water Exercise on the Foot Pressure Distribution of a Female Adult with Hemiplegia: A Biomechanical Case Study

  • Lee, In-Woo;Kim, Jin-Ki;Yang, Jeong-Ok;Lee, Joong-Sook;Lee, Bom-Jin
    • 한국운동역학회지
    • /
    • 제23권2호
    • /
    • pp.179-187
    • /
    • 2013
  • This case study was conducted to determine the effects of water exercise on the foot pressure distribution (FPD) of persons who have a hemiplegia. A 43-year old female with hemiplegia acquired at the age of 3 years was selected from a local disability program. A 12-week water exercise program (60 min. per session and twice a week) focusing on gait training was developed and implemented as the intervention of this study. A recent product of the Pedar-X (Novel, Germany) was used to measure the FPD of hemiplegic gait before and after the intervention. Variables considered in this study included the average pressure (AP), contact area (CA), maximum pressure (MP), ground reaction force (GRF), and center of pressure (COP). The data collected were analyzed via the descriptive statistics and qualitative analyses on the graphical presentations of the FPD. Results revealed that the AP and CA of the hemiplegic foot was considerably increased before and after the intervention. Similar results were also found in the MP and GRF. Additionally, the graphical route of the COP related to hemiplegic foot was changed in a positive way after the intervention. It can be concluded that water exercise may be beneficial to restore hemiplegic gait. Limitations related to measurement and generalizability are further discussed.

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발 (Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton)

  • 임동환;김완수;미안 아쉬팍 알리;한창수
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.

준비동작의 형태 변화에 따른 신체 움직임의 운동역학적 분석 (Sports Biomechanical Analysis of Physical Movements on the Basis of the Patterns of the Ready Poses)

  • 이중숙
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.179-195
    • /
    • 2002
  • 본 연구의 목적은 현대 스포츠가 점점 스피디하고 격렬한 상황의 연출을 요구하고 있는 상황에서 순간적으로 신속 정확한 판단력과 그에 따른 재빠르고 민첩한 행동이 필요할 때가 많으므로 준비동작에 대한 운동역학적 메카니즘의 이해가 필요하다고 판단되어 연구를 실시하였다. 따라서 본 연구에서는 준비동작의 형태 변화(open stance & cross stance)에 따른 신체움직임을 운동역학적인 분석을 통하여 바람직한 준비동작의 모델을 제시하는데 있으며, 이러한 연구 목적을 달성하기 위하여 연구대상자는 부산 B대학교 핸드볼 선수인 남학생 5명과 부산 S대학교 사격 선수인 여학생 5명을 선정하여 실험하였다. 준비자세에서의 좌 우 전방향으로 이동시의 동작을 2대의 고속 비디오 카메라와 2대의 지면반력기 그리고 전신반응측정 장비를 이용하여 자료를 수집하였고, 준비자세에서의 좌 우 전방향 이동시의 메카니즘을 분석한 결과 다음과 같은 결론을 얻었다. 첫째, 준비자세에서 좌 우 전방향 이동시 cross stance 자세가 open stance 자세 보다 신체중심이동 속도가 빠른 것으로 분석되었으며, Take-off시 슬관절의 굴곡각은 약 $175^{\circ}$의 각도를 유지하고, 고관절의 굴곡각은 약 $172^{\circ}$의 각도를 유지하여 준비자세를 취하는 것이 바람직한 것으로 분석되었다. 둘째, 준비자세에서의 좌 우 전방향으로 이동시 지지시간과 지면반력분석 결과를 종합해 보면 준비동작에서 왼쪽방향으로 이동시 가장 빠른 신체중심이동 속도를 나타냈다. 셋째, 준비자세에서 좌 우 전방향 이동시 지면반력 분석 결과에서도 cross stance 자세가 open stance 자세보다는 왼발과 오른발에 체중을 적절히 분산시켜 준비동작을 수행할 수 있도록 하여 상해를 예방할 수 있으므로 cross stance 준비자세가 바람직한 것으로 분석되었다. 따라서 준비자세의 역학적인 메가니즘은 cross stance 자세가 open stance 자세보다 보다 바람직한 준비자세라고 할 수 있으나 반드시 개인차도 고려되어져야 할 것이다.

달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화 (Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running)

  • Young-Seong Lee;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제33권4호
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.