Browse > Article
http://dx.doi.org/10.5103/KJSB.2016.26.1.115

Analyses of Plantar Foot Pressure and Static Balance According to the Type of Insole in the Elderly  

Bae, Kang-Ho (Department of Physical Education, Graduate School of Silla University)
Shin, Jin-Hyung (Department of Physical Education, Graduate School of Silla University)
Lee, Joong-Sook (Department of Kinesiology, College of Health and Welfare, Silla University)
Yang, Jeong-Ok (Department of Kinesiology, College of Health and Welfare, Silla University)
Lee, Bom-Jin (Department of Kinesiology, College of Health and Welfare, Silla University)
Park, Seung-Bum (Footwear Biomechanics Team, Footwear Industrial Promotion Center, Busan Economic Promotion Agency)
Publication Information
Korean Journal of Applied Biomechanics / v.26, no.1, 2016 , pp. 115-126 More about this Journal
Abstract
Objective: The purpose of this study was to investigate plantar foot pressure and static balance according to the type of insole in the elderly. Methods: Thirteen elderly (mean age: $67.08{\pm}2.25years$, mean height: $159.63{\pm}9.64cm$, mean body weight: $61.48{\pm}9.06kg$) who had no previous injury experience in the lower limbs and a normal gait pattern participated in this study. Three models of insoles of the normal, 3D, and triangle types were selected for the test. The Pedar-X system and Pedar-X insoles, 3.3 km/h of walking speed, and a compilation of 20 steps walking stages were used to analyze foot-pressure distribution. Static balance test was conducted using Gaitview AFA-50, and balance (opening eyes, closing eyes) was inspected for 20 s. One-way ANOVA was conducted to test the significance of the results with the three insoles. p-value of less than .05 was considered statistically significant. Results: The mean foot pressure under the forefoot regions was the lowest with the 3D insole during treadmill walking (p<.05). The mean value under the midfoot was the highest with the 3D insole (left: p<.05, right: p<.01). The mean value under the rearfoot was the lowest with the 3D insole (p<.001). The maximum foot pressure value under the foot regions was the lowest on both sides of the forefoot with the 3D insole. A statistically significant difference was seen only in the left foot (p<.01). The maximum value under the midfoot was the highest with the 3D insole (p<.001). No statistically significant difference was detected on the values under the rearfoot. In the case of vertical ground reaction force (GRF), statistically significant difference was seen only in the left side rearfoot (p<.01). However, static balance values (ENV, REC, RMS, Total Length, Sway velocity, and Length/ENV) did not show significant differences by the type of insole. Conclusion: These results show that functional insoles can decrease plantar pressure and GRF under the forefoot and rearfoot. Moreover, functional insoles can dislodge the overload of the rearfoot and forefoot to the midfoot. However, functional insoles do not affect the static balance in the elderly.
Keywords
Gait; Foot plantar pressure; Ground reaction force; Static balance; Elderly;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Bird, M. L., Hill, K., Ball, M. & Williams, A. D. (2009). Effects of resistance and flexibility exercise interventions on balance and related measures in older adults. Journal of Aging and Physical Activity, 17(4), 444-454.   DOI
2 Cohen, H., Blatchly, C. A. & Gombash, L. L. (1993). A study of the clinical test of sensory interaction and balance. Physical Therapy, 73(6), 346-351.   DOI
3 Cromwell, R. L. & Newton, R. A. (2002). Forrest G. Influence of vision on head stabilization strategies in old. The Journals of Gerontology, 57(7), 442-448.   DOI
4 Donovan, J. L., Mary, K. H., Paul, K. C., Kirk, E. S. & Michael, J. M. (2007). Effect of footwear and orthotic devices on stress or eduction and soft tissue strain of the neuropathic foot. Clinical Biomechanics, 22, 352-359.   DOI
5 Gross, M. L. & Napoli, R. C. (1993). Treatment of lower extremity injuries with orthotics shoe insert. Sports Medicine, 15, 69-70.
6 Hong, D. S. (2003). A Study on Effect of Therapeutic Exercise through Lifting a paralyzed side Shoe upon Balancing Ability of Hemiplegic Patients. Unpublished master's thesis, Graduate School of Korea University.
7 Hootman, J. M., Dick, R. & Agel, J. (2007). Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. Journal of Athletic Training, 42(2), 311-319.
8 Hunter, S., Dolan, M. G. & Davis, M. (1995). Foot Orthotics in Therapy and Sport. Champaign, Human Kinetics.
9 Hyung, I. H. (2008). The effect of Balance and Muscle Activities on the Stability of Foot. Unpublished doctoral dissertation, Graduate School of Daegu University.
10 Jette, A. M. & Branch, L. G. (1981). The framingham disability study: II. Physical disability among the aging. American Journal of Public Health, 71(11), 1211-1216.   DOI
11 Jin, S. H. (2007). The Effects of Custom Orthotics on Foot Biomechanics, Posture, Pressure, Balance, and Pain. Unpublished master's thesis, Graduate School of Ewha Womans University.
12 Joo, C. I. (2004). Study on the Measurements of Plantar Foot Pressure Distribution for understanding Characteristics of Insole Materials: Focused on the Insole Materials in Footwear. Unpublished master's thesis, Graduate School of Korea University of Technology and Education.
13 Kang, H. J. (2008). The Effect of a Customized Insole for High Arched Patients with Hind foot Supination. Unpublished master's thesis, Graduate School of Yonsei University.
14 Kerrigan, D. C., Todd, M. K., Della Croce, U., Lipsitz, L. A. & Collins, J. J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79(3), 317-322.   DOI
15 Kim, C. S. (2008). A Study On the EVA Material Hardness Effect to the Balance and Cushion in Case of Standing and Walking. Unpublished master's thesis, Graduate School of Dongseo University.
16 Kim, K. H. (2011). Biomechanical Analysis of Arch Supprot Devices on Normal and Low Arch. Unpublished master's thesis, Graduate School of Kyungsung University.
17 Kogler, G. F., Solomnidis, S. E. & Paul, J. P. (1995). Invitro method for quantifying the effectiveness of the longitudinal arch support mechanism of the orthoses. Clinical Biomechanics, 10(5), 245-252.   DOI
18 Lee, H. T. (2010). The Effect of the Wedge Insole Angle of Supinated Group on Foot Contact Time, Foot Contact Area and Foot Pressure While Walking. Unpublished master's thesis, Graduate School of Pukyong National University.
19 Lee, H. J., Song, C. H., Lee, K. J., Lee, Y. W., Lee, G. C., Shin, W. S. & Lee, S. W. (2010). The effects of complex exercise training for lower legs muscle strength, muscle endurance, balance ability and gait ability in the elderly. Journal of Sport and Leisure Studies, 41(2), 935-947.
20 Lee, H. K., Lee, J. C. & Song, G. H. (2014). The effects of rhythmic sensorimotor training in unstable surface on balance ability of elderly women. Journal of the Korean Academy of Family Medicine, 9(2), 181-191.
21 Lee, J. H., Lee, Y. S., Lee, J. O. & Park, S. H. (2007). Biomechanical gait analysis and simulation on the normal, cavus and flat foot with orthotics. Journal of Mechanical Science and Technology, 31(11), 1115-1123.
22 Lee, J. I. (2011). The Effect of Wedge insole of Pronated Group on Maximum Force. Unpublished master's thesis, Graduate School of Pukyong National University.
23 Lockhart, T. E., Smith, J. L. & Woldstad, J. C. (2005). Effects of aging on the biomechanics of slips and falls. Human Factors, 47(4), 708-729.   DOI
24 Milgrom, C., Giladi, M., Kashtan, H., Simkin, A., Chisin, R., Margulies, J., Steinberg, R., Aharonson, Z. & Stein, M. (1985). A Prospective study of the effect of a shockabsorbing orthotic device on the incidence of stress fractures in military recruits. Foot & Ankle, 6, 101-14.   DOI
25 Min-Chi, C. & Mao-Jiun, J. W. (2007). Professional footwear evaluation for clinical nurses. Applied Ergonomics, 38, 133-141.   DOI
26 Park, S. B., Lee, K. D., Kim, D. W., Ryu, J. H. & Kim, K. H. (2011). Comparative analysis of foot pressure distribution by functional Insole to be transformed and restored during walking. Korean Journal of Sport Biomechanics, 21(2), 231-241.   DOI
27 Nigg, B. M. (2001). The role of impact forces and foot pronation: A new paradigm. Clinical Journal of Sport Medicine. 11, 2-9.   DOI
28 Olsen, O. E., Myblebust, G., Engebresten, L. & Bahr, R. (2004). Injury mechanism for anterior cruciate ligament injuries in team handball. American Journal of Sports Medicine, 32(4), 1002-1012.   DOI
29 Park, J. S., Choi, E. Y. & Hwang, T. Y. (2002). The effects of strengthening leg Muscular strength on the elderly's walking and balance ability. The Journal of Korean Society of Physical Therapy, 14(2), 71-79.
30 Province, M. A., Hadley, E. C., Hornbrook, M. C., Lipsitz, L. A., Miller, P., Mulrow, C. D., Ory, M. G., Sattin, R. W., Tinetti, M. E. & Wolf, S. L. (1995). The effects of exercise on falls in elderly patients. The Journal of the American Medical Association, 273(17), 1341-1347.   DOI
31 Shumway-cook, A.,& Woollacott, M. H. (1995). Motor Control; Theory and Practical Applications. Baltimore, Williams & Wilkin.
32 Song, J. H. (2008). The Kinematic comparative study about effects of foot orthotics. Korean Journal of Sport Science, 19(3), 11-21.   DOI
33 Song, J. H., Lee, S. H., Baek, J. H. & Park, J. H. (2008). The influence kinetic variables of the foot orthotics wearing. Korean Journal of Sport Science, 19(4), 55-63.   DOI
34 Spirduso, W. W., Francis, K., Eakin, T. & Stanford, C. (2005). Quantification of manual force control and tremor. Journal of Motor Behavior, 37(3), 197-210.   DOI
35 Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait Posture. 3(4), 193-214.   DOI
36 Statistics Korea (2015). 2015 Elderly Demographics. from http://kostat.go.kr.
37 Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M. (2011). Gait speed and survival in older adults. JAMA, 305(1), 50-58.   DOI
38 Wade, M. G. & Jones, G. (1997). The role of vision and spatial orientation in the maintenance of posture. Physical Therapy, 77(6), 619-628.   DOI
39 Woo, J. H., Lee, J. S., Yang, J. O., Lee, B. J., Han, D. W., Bae, K. H., Park, S. M. & Bae, J. W. (2015). Analysis of plantar foot pressure according to 2D & 3D insole types during treadmill gait. Korean Journal of Sport Biomechanics, 25(1), 113-122.   DOI
40 Wosk, J. & Voloshin, A. (1982). An in vivo study of low back pain and shock absorption in the human locomotor system. Journal of Biomechanics, 15, 21-27.   DOI
41 Yang, S. M. (2013). The Effects of the Balance among the increasing Hight Shoes, Socks and Insoles in Men. Unpublished master's thesis, Graduate School of Catholic University of Daegu.
42 Yoon, J. K., Park, J. M. & Kim, J. M. (2002). The effect of shoe lift of the paretic limb on gait patterns in hemiplegics. The Journal of Korean Society of Physical Therapy, 9(2), 83-96.