• Title/Summary/Keyword: GPx

Search Result 445, Processing Time 0.039 seconds

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

Gene Expression Patterns of the Endogenous Antioxidant Enzymes in Linuron-Treated Rat Ventral Prostates after Castration

  • Yon, Jung-Min;Lin, Chunmei;Lee, Yoon-Bok;Lee, Beom-Jun;Yun, Young-Won;Nam, Sang-Yoon
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.101-105
    • /
    • 2012
  • Linuron is a pesticide with a weak anti-androgenic property, which impacts male reproductive organs. In this study, to clarify whether linuron affects the cellular antioxidant system of ventral prostate, gene expression patterns of the representative antioxidant enzymes such as glutathione peroxidase (GPx), selenoprotein P (SePP), and superoxide dismutase (SOD) were investigated in the rat ventral prostates exposed to linuron using real-time RT-PCR analyses. Sprague-Dawley rats castrated at 6 weeks old were treated with linuron (25, 50, or 100 mg/kg per oral) daily for 10 days after testosterone propionate administration (0.4 mg/kg) subcutaneously. As compared to normal control animals, mRNA levels of phospholipid hydroperoxide GPx (PHGPx), SePP, and Mn SOD significantly increased in the prostates exposed to linuron (25, 50, and 100 mg/kg). However, cytosolic GPx (100 mg/kg) and Cu/Zn SOD (25, 50, and 100 mg/kg) mRNA levels significantly decreased in the ventral prostates. These results indicate that linuron upregulates the expressions of PHGPx, SePP, and Mn SOD mRNAs, but down-regulates the expressions of cytosolic GPx and Cu/Zn SOD in rat prostates, suggesting that linuron may have dual effects in the cellular antioxidant system of prostate.

Naringenin Exerts Cytoprotective Effect Against Paraquat-Induced Toxicity in Human Bronchial Epithelial BEAS-2B Cells Through NRF2 Activation

  • Podder, Biswajit;Song, Ho-Yeon;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.605-613
    • /
    • 2014
  • We have previously shown that paraquat (PQ)-induced oxidative stress causes dramatic damage in various human cell lines. Naringenin (NG) is an active flavanone, which has been reported to have beneficial bioactivities, including antioxidative, anti-inflammatory, and antitumorigenic activities, with a relatively low toxicity to normal cells. In this study, we intended to assess the cytoprotective effect of NG against PQ-induced toxicity in the human bronchial epithelial BEAS-2B cell line. Co-treatment with NG in PQ-treated BEAS-2B cells can reduce PQ-induced cellular toxicity. NG can also decrease the generation of intracellular ROS caused by PQ treatment. We also observed that treatment with NG in PQ-exposed BEAS-2B cells can significantly induce the expression of antioxidant-related genes, including GPX2, GPX3, GPX5, and GPX7. NG co-treatment can also activate the NRF2 transcription factor and promote its nuclear translocation. In addition, NG co-treatment can induce the expression of NRF2-downstream target genes such as that of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). A small interfering RNA study revealed that the knockdown of NRF2 can abrogate NG-mediated protection of the cells from PQ-induced cellular toxicity. We propose that NG effectively alleviates PQ-induced cytotoxicity in human bronchial epithelial BEAS-2B cells through the NRF2-regulated antioxidant defense pathway, and NG might be a good therapeutic candidate molecule in oxidative stress-related diseases.

Effects of Genistein on the Gene Expressions of Glutathione Peroxidases and Superoxide Dismutases in Ethanol-Treated Mouse Fetuses

  • Yon, Jung-Min;Lin, Chunmei;Jung, A-Young;Lee, Jong-Geol;Jung, Ki-Youn;Baek, In-Jeoung;Lee, Beom-Jun;Nam, Sang-Yoon;Yun, Young-Won
    • Journal of Embryo Transfer
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2011
  • Genistein is a product of naturally occurring isoflavones at relatively high levels in soybeans. The harmful effects of ethanol are attributed to the induction of biological processes which lead to an increase in the generation of reactive oxygen species in fetuses. In this study, we investigated the effects of genistein ($1{\times}10^{-8}$ and $1{\times}10^{-7}\;{\mu}g$/ml) on gene expressions of the representative cellular antioxidative enzymes in ethanol (1 ${\mu}l$/ml)-treated mouse fetuses during the critical period (embryonic days 8.5~10.5) of organogenesis using a semi-quantitative RT-PCR analysis. The mRNA levels of cytosolic glutathione peroxidase (GPx), phospholipid hydroperoxide GPx, cytosolic CU,Zn-superoxide dismutase (SOD), and mitochondrial SOD were significantly decreased in ethanol-treated fetuses. However, the mRNA levels of ethanol plus genistein-treated fetuses were significantly higher than those of ethanol alone fetuses. These results indicate that genistein can up-regulate the expressions of GPx and SOD mRNAs reduced by the ethanol treatment in fetuses.

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Effect of Ligusticum chuonxiong Hort Extracts on the Bioactivity in High-fat diet-fed Obese Rats (천궁 추출물이 고지방식이로 유도된 비만흰쥐의 생체활성에 미치는 영향)

  • Heo, Ye-Young;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.370-376
    • /
    • 2011
  • This study was performed to investigate the antioxidative effect of Ligusticum chuanxiong Hort extracts (LCE) against the hyperlipidemia of high-fat diet-fed obese rats. The rats were divided into the three groups (normal group, control group and sample group) to perform the experimental research. 1.5 ml/kg of LCE was intraperitoneally administered into the sample group for 21 days. The equal dose of 0.9% saline was intraperitoneally administered into the normal group and the control group. On day 22, they were anesthetized with ether and dissected. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) were examined in serum of rats. Superoxide dismutase (SOD) was measured in mitochondrial fraction. Malondialdehyde (MDA), catalase (CAT), and glutamate peroxidase (GPx) were determined in liver homogenate. High-fat diet markedly increased the levels of AST, ALT and MDA, significantly decreasing those of SOD, CAT and GPx. But Ligusticum chuanxiong Hort-pretreatment decreased the levels of AST, ALT, and MDA. increasing those of SOD, CAT and GPx. These results demonstrated the antioxidative effects, suggesting that LCE could be the candidate for the functional material.

Changes of Antioxidant Enzyme Activity in Bagrid Catfish, Pseudobagrus fulvidraco Exposed to Diethylhexyl Phthalate (Diethylhexyl Phthalate에 노출된 동자개, Pseudobagrus fulvidraco의 항산화 효소활성의 변동)

  • KEUM Yoo-Hwa;JEE Jung-Hoon;KOO Ja-Geun;KANG Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.304-308
    • /
    • 2005
  • The effects of diethylhexyl phthalate (DEHP) on various oxidative stress responses in liver, kidney and gill tissues of freshwater bagrid catfish Pseudobagrus fulvidraco were investigated under laboratory conditions. Bagrid catfish were intraperitoneally injected with sunflower seed oil containing nominal concentrations of 0, 300 or 900mg DEHP per kilogram of body weight for 3 days and the effects after last injection were assessed in liver, kidney and gill tissues of the exposed organisms. The oxidative stress responses of fish were evaluated by analyzing the level of glutathione (GSH), as well as the activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). After exposure to the DEHP, there were significant decrease in GR, GPx activity and GSH content in liver of fish exposed to 900 mg DEHP per kilogram of body weight compared to the control group. Compared with the control group, significant decreases in renal GPx and GR activity were observed in the DEHP treatment groups (900 mg $kg^{-1}$ bw). However, no significant difference was observed in any oxidative stress responses in gills between the DEHP-treated and the untreated group of fish. The findings of the present investigation show that DEHP induce oxidative stress and the liver was the most affected organ followed by the kidney and gills. Furthermore, the changes of GPx and GR activities may be important indicators of oxidative stress responses but additional study is required to confirm the oxidative stress of DEHP.

Effect of ${\beta}-sitosterol$ from Pueraria thunbergiana on the Antioxidant Enzyme Activities in HEI-OC1 Cells (갈근으로부터 추출한 ${\beta}-sitosterol$이 HEI-OC1 세포의 항산화 효소 활성에 미치는 영향)

  • Hwan, Ji-Young;Chang, Hye-Soon;Yu, Hyeon-Hee;Moon, Hae-Dalma;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.884-890
    • /
    • 2007
  • A mechanism of hair cell damage caused by noise and ototoxic agents is mediated through generation of free radicals and reactive oxygen species(ROS). It is known that most of animals have defense systems of ROS that protect against ROS, and the cochlea of animals also has ROS defense system, which appear efficient in detoxifying ROS generated under normal condition. This system includes several antioxidant enzymes such as superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase (GPX), and glutathione reductase(GR). The radix of Pueraria thunbergiana(P. thunbergiana) is traditionally prescribed to attenuate the clinical manifestation of inner ear dysfunction and various clinical situations including fevers, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol, and treating chronic alcoholism in Oriental Medicine. In the present study, to investigate the protection mechanism of ${\beta}-sitosterol$ from P. thunbergiana on cisplatin cytotoxicity toward HEI-OC1, we measured the effects of ${\beta}-sitosterol$ on activities of SOD, CAT, GPX, and GR in cisplatin treated cells. SOD, CAT, GPX, and GR activities were significantly increased in the presence of 0.001-0.1 ${\mu}g/ml$ of ${\beta}-sitosterol$ compared to the control group. These results indicate that ${\beta}-sitosterol$ protects cisplatin-induced HEI-OC1 cell damage through increasing the antioxidant enzyme system such as SOD, CAT, GPX, and GR.

Antidiabetic Potential of Kefir Combination from Goat Milk and Soy Milk in Rats Induced with Streptozotocin-Nicotinamide

  • Nurliyani,;Harmayani, Eni;Sunarti,
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.847-858
    • /
    • 2015
  • The study aimed to evaluate the effect of kefir combination from goat milk and soy milk on lipid profile, plasma glucose, glutathione peroxidase (GPx) activity and the improvement of pancreatic β-cell in diabetic rats. Male rats were divided into five treatments: normal control, diabetic control, goat milk kefir, combination of goat milk-soy milk kefir and soy milk kefir. All rats were induced by streptooztocin-nicotinamide (STZ-NA), except for normal control. After 35 d experiment, the rats were sampled for blood, sacrificed and sampled for pancreatic tissues. Results showed that diabetic rats fed kefir combination had higher (p<0.05) triglyceride than the rats fed goat milk or soy milk kefir. Decreasing of plasma glucose in diabetic rats fed kefir combination was higher (p<0.05) than rats fed goat millk kefir. The activity of GPx in diabetic rats fed three kinds of kefir were higher (p<0.01) than untreated diabetic rats. The average number of Langerhans and β-cells in diabetic rats fed kefir combination was the same as the normal control, but it was higher than diabetic control. It was concluded that kefir combination can be used as antidiabetic through maintaining in serum triglyceride, decreasing in plasma glucose, increasing in GPx activity and improving in pancreatic β-cells.

Effect of Occlusion upon Rat Skin on the Activities of Cutaneous Oxygen Radical Metabolizing Enzymes in Rats

  • Han, Sun-Il;Yoon, Chong-Guk;Cho, Hyun-Gug
    • Biomedical Science Letters
    • /
    • v.7 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • To evaluate the effect of occlusive skin on the activity of cutaneous oxygen free radical metabolizing enzymes in rats, the dorsal skin was covered with closed glass chamber shaped petri dish, 46 mm in diameter and 10 mm in height and sealed by an adhesive. Five day-occluded group showed more increased activity of xanthine oxidase (XO) than that of control, and the activity of five day-occluded group was higher than that of ten day-occluded group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were significantly higher in ten day-occluded group than in control or five day-occluded group. All the more, five day-occluded group showed the decreasing tendency of SOD and GPx activities compared to those of control. On the other hand, the cerrous perhydroxide deposits were observed in the intercellular space of the stratum basale in five day-occluded group under the electronic microscope using a cytochemistry method. Futhermore, the degree of cerrous perhydroxide reaction was lower in ten day-occluded group than in five day-occluded group. In conclusion, the increased XO activity and the decreased SOD and GPx activities are likely to responsible far the accumulation of $H_2O_2$ in five day-occluded group.

  • PDF