Effects of Genistein on the Gene Expressions of Glutathione Peroxidases and Superoxide Dismutases in Ethanol-Treated Mouse Fetuses

  • Yon, Jung-Min (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lin, Chunmei (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Jung, A-Young (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Jong-Geol (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Jung, Ki-Youn (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Baek, In-Jeoung (Laboratory of Mammalian Molecular Genetics, Department of Biochemistry, College of Science, Yonsei University) ;
  • Lee, Beom-Jun (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Nam, Sang-Yoon (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Yun, Young-Won (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • Received : 2011.04.18
  • Accepted : 2011.04.26
  • Published : 2011.06.30

Abstract

Genistein is a product of naturally occurring isoflavones at relatively high levels in soybeans. The harmful effects of ethanol are attributed to the induction of biological processes which lead to an increase in the generation of reactive oxygen species in fetuses. In this study, we investigated the effects of genistein ($1{\times}10^{-8}$ and $1{\times}10^{-7}\;{\mu}g$/ml) on gene expressions of the representative cellular antioxidative enzymes in ethanol (1 ${\mu}l$/ml)-treated mouse fetuses during the critical period (embryonic days 8.5~10.5) of organogenesis using a semi-quantitative RT-PCR analysis. The mRNA levels of cytosolic glutathione peroxidase (GPx), phospholipid hydroperoxide GPx, cytosolic CU,Zn-superoxide dismutase (SOD), and mitochondrial SOD were significantly decreased in ethanol-treated fetuses. However, the mRNA levels of ethanol plus genistein-treated fetuses were significantly higher than those of ethanol alone fetuses. These results indicate that genistein can up-regulate the expressions of GPx and SOD mRNAs reduced by the ethanol treatment in fetuses.

Keywords

Acknowledgement

Supported by : Chungbuk National University

References

  1. Abel EL and Hannigan JH. 1995. Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol. Teratol. 17:445-462. https://doi.org/10.1016/0892-0362(95)98055-6
  2. Abel EL and Sokol R. 1991. A revised conservative estimate the incidence of FAS and its economic impact. Alcohol Clin. Exp. Res. 15:514-524. https://doi.org/10.1111/j.1530-0277.1991.tb00553.x
  3. Baek IJ, Yon JM, Lee BJ, Yun YW, Yu WJ, Hong JT, Ahn B, Kim YB, Kim DJ, Kang JK and Nam SY. 2005. Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis. Anat. Embryol (Berl). 209:315-321. https://doi.org/10.1007/s00429-004-0447-5
  4. Bonacasa B, Siow RC and Mann GE. 2011. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 18:270-285. https://doi.org/10.1111/j.1549-8719.2011.00088.x
  5. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE and Vina J. 2006. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J. 20:2136-2138. https://doi.org/10.1096/fj.05-5522fje
  6. Dennery PA. 2007. Effects of oxidative stress on embryonic development. Birth Defects Res. C. Embryo Today 81:155-162. https://doi.org/10.1002/bdrc.20098
  7. Green CR, Watts LT, Kobus SM, Henderson GI, Reynolds JN and Brien JF. 2006. Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin $F_{2{\alpha}}$ concentrations in the hippocampus of the perinatal guinea pig. Reprod. Fertil. Dev. 18:517-524. https://doi.org/10.1071/RD05128
  8. Guo Q, Rimbach G, Moini H, Weber S and Packer L. 2002. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology 176:171-180.
  9. Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M, Kitamoto T, Hayasaka M, Hanaoka K and Nakagawa Y. 2003. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun. 305:278-286. https://doi.org/10.1016/S0006-291X(03)00734-4
  10. Kim MR, Lee KN, Yon JM, Lee SR, Jin Y, Baek IJ, Lee BJ, Yun YW and Nam SY. 2008. Capsaicin prevents ethanol-induced teratogenicity in cultured mouse whole embryos. Reprod. Toxicol. 26:292-297. https://doi.org/10.1016/j.reprotox.2008.09.006
  11. Kotch LE, Chen S-E and Sulik KK. 1995. Ethanol-induced teratogenesis: free radical damage as a possible mechanism. Teratology 52:128-136. https://doi.org/10.1002/tera.1420520304
  12. Lee SR, Kim MR, Yon JM, Baek IJ, Park CG, Lee BJ, Yun YW and Nam SY. 2009. Black ginseng inhibits ethanol-induced teratogenesis in cultured mouse embryos through its effects on antioxidant activity. Toxicol In Vitro 23:47-52. https://doi.org/10.1016/j.tiv.2008.10.001
  13. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC and Epstein CJ. 1995. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11:376-381. https://doi.org/10.1038/ng1295-376
  14. Livy DJ, Miller EK, Maier SE and West JR. 2003. Fetal alcohol exposure and temporal vulnerability: effects of bingelike alcohol exposure on the developing rat hippocampus. Neurotoxicol. Teratol. 25:447-458. https://doi.org/10.1016/S0892-0362(03)00030-8
  15. Mahn K, Borrás C, Knock GA, Taylor P, Khan IY, Sugden D, Poston L, Ward JP, Sharpe RM, Viña J, Aaronson PI and Mann GE. 2005. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J. 19:1755-1757.
  16. Martinez-Frias ML, Bermejo E, Rodriguez-Pinilla E and Frias J. 2004. Risk for congenital anomalies associated with different sporadic and daily doses of alcohol consumption during pregnancy: a case-control study. Birth Defects Res. A Clin. Mol. Teratol. 70:194-200. https://doi.org/10.1002/bdra.20017
  17. Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ and Wallace DC. 1999. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96:846-851. https://doi.org/10.1073/pnas.96.3.846
  18. Miao L and St Clair DK. 2009. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47:344-356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018
  19. Migliaccio S and Anderson JJ. 2003. Isoflavones and skeletal health: are these molecules ready for clinical application? Osteoporos. Int. 14:361-368. https://doi.org/10.1007/s00198-002-1372-1
  20. Mohamed Salih S, Nallasamy P, Muniyandi P, Periyasami V and Carani Venkatraman A. 2009. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes 1:278-287. https://doi.org/10.1111/j.1753-0407.2009.00045.x
  21. New DA. 1978. Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. Camb. Philos. Soc. 53:81-122. https://doi.org/10.1111/j.1469-185X.1978.tb00993.x
  22. Ornoy A. 2007. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod. Toxicol. 24:31-41. https://doi.org/10.1016/j.reprotox.2007.04.004
  23. Papp LV, Lu J, Holmgren A and Khanna KK. 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox. Signal. 9:775-806. https://doi.org/10.1089/ars.2007.1528
  24. Pavese JM, Farmer RL and Bergan RC. 2010. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 29:465-82. https://doi.org/10.1007/s10555-010-9238-z
  25. Pesce N, Eyster KM, Williams JL, Wixon R, Wang C and Martin DS. 2000. Effect of genistein on cardiovascular responses to angiotensin II in conscious unrestrained rats. J. Cardiovasc. Pharmacol. 36:806-809. https://doi.org/10.1097/00005344-200012000-00018
  26. Schneider M, Vogt Weisenhorn DM, Seiler A, Bornkamm GW, Brielmeier M and Conrad M. 2006. Embryonic expression profile of phospholipid hydroperoxide glutathione peroxidase. Gene Expr. Patterns 6:489-94. https://doi.org/10.1016/j.modgep.2005.11.002
  27. Smith SM. 1997. Alcohol-induced cell death in the embryo. Alcohol Health Res. World 21:287-297.
  28. Steinbrenner H and Sies H. 2009. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta. 1790:1478-1485. https://doi.org/10.1016/j.bbagen.2009.02.014
  29. Suzuki K, Koike H, Matsui H, Ono Y, Hasumi M, Nakazato H, Okugi H, Sekine Y, Oki K, Ito K, Yamamoto T, Fukabori Y, Kurokawa K and Yamanaka H. 2002. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int. J. Cancer 99:846-852. https://doi.org/10.1002/ijc.10428
  30. Yon JM, Baek IJ, Lee SR, Jin Y, Kim MR, Nahm SS, Kim JS, Ahn B, Lee BJ, Yun YW and Nam SY. 2008. The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis. J Mol Histol. 39:95-103. https://doi.org/10.1007/s10735-007-9134-1
  31. Zelko IN, Mariani TJ and Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33:337-49. https://doi.org/10.1016/S0891-5849(02)00905-X
  32. Zielonka J, Gbicki J and Grynkiewicz G. 2003. Radical scavenging properies of genistein. Free Radi. Biol. Med. 35:958-965. https://doi.org/10.1016/S0891-5849(03)00472-6