Browse > Article

Effects of Genistein on the Gene Expressions of Glutathione Peroxidases and Superoxide Dismutases in Ethanol-Treated Mouse Fetuses  

Yon, Jung-Min (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Lin, Chunmei (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Jung, A-Young (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Lee, Jong-Geol (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Jung, Ki-Youn (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Baek, In-Jeoung (Laboratory of Mammalian Molecular Genetics, Department of Biochemistry, College of Science, Yonsei University)
Lee, Beom-Jun (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Nam, Sang-Yoon (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Yun, Young-Won (Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Publication Information
Journal of Embryo Transfer / v.26, no.2, 2011 , pp. 135-140 More about this Journal
Abstract
Genistein is a product of naturally occurring isoflavones at relatively high levels in soybeans. The harmful effects of ethanol are attributed to the induction of biological processes which lead to an increase in the generation of reactive oxygen species in fetuses. In this study, we investigated the effects of genistein ($1{\times}10^{-8}$ and $1{\times}10^{-7}\;{\mu}g$/ml) on gene expressions of the representative cellular antioxidative enzymes in ethanol (1 ${\mu}l$/ml)-treated mouse fetuses during the critical period (embryonic days 8.5~10.5) of organogenesis using a semi-quantitative RT-PCR analysis. The mRNA levels of cytosolic glutathione peroxidase (GPx), phospholipid hydroperoxide GPx, cytosolic CU,Zn-superoxide dismutase (SOD), and mitochondrial SOD were significantly decreased in ethanol-treated fetuses. However, the mRNA levels of ethanol plus genistein-treated fetuses were significantly higher than those of ethanol alone fetuses. These results indicate that genistein can up-regulate the expressions of GPx and SOD mRNAs reduced by the ethanol treatment in fetuses.
Keywords
ethanol; genistein; GPx; SOD; mouse fetuses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abel EL and Sokol R. 1991. A revised conservative estimate the incidence of FAS and its economic impact. Alcohol Clin. Exp. Res. 15:514-524.   DOI   ScienceOn
2 Baek IJ, Yon JM, Lee BJ, Yun YW, Yu WJ, Hong JT, Ahn B, Kim YB, Kim DJ, Kang JK and Nam SY. 2005. Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis. Anat. Embryol (Berl). 209:315-321.   DOI   ScienceOn
3 Smith SM. 1997. Alcohol-induced cell death in the embryo. Alcohol Health Res. World 21:287-297.
4 Steinbrenner H and Sies H. 2009. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta. 1790:1478-1485.   DOI   ScienceOn
5 Suzuki K, Koike H, Matsui H, Ono Y, Hasumi M, Nakazato H, Okugi H, Sekine Y, Oki K, Ito K, Yamamoto T, Fukabori Y, Kurokawa K and Yamanaka H. 2002. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int. J. Cancer 99:846-852.   DOI   ScienceOn
6 Yon JM, Baek IJ, Lee SR, Jin Y, Kim MR, Nahm SS, Kim JS, Ahn B, Lee BJ, Yun YW and Nam SY. 2008. The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis. J Mol Histol. 39:95-103.   DOI   ScienceOn
7 Zelko IN, Mariani TJ and Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33:337-49.   DOI   ScienceOn
8 New DA. 1978. Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. Camb. Philos. Soc. 53:81-122.   DOI   ScienceOn
9 Zielonka J, Gbicki J and Grynkiewicz G. 2003. Radical scavenging properies of genistein. Free Radi. Biol. Med. 35:958-965.   DOI   ScienceOn
10 Mohamed Salih S, Nallasamy P, Muniyandi P, Periyasami V and Carani Venkatraman A. 2009. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes 1:278-287.   DOI   ScienceOn
11 Ornoy A. 2007. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod. Toxicol. 24:31-41.   DOI   ScienceOn
12 Papp LV, Lu J, Holmgren A and Khanna KK. 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox. Signal. 9:775-806.   DOI   ScienceOn
13 Pavese JM, Farmer RL and Bergan RC. 2010. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 29:465-82.   DOI   ScienceOn
14 Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ and Wallace DC. 1999. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96:846-851.   DOI   ScienceOn
15 Pesce N, Eyster KM, Williams JL, Wixon R, Wang C and Martin DS. 2000. Effect of genistein on cardiovascular responses to angiotensin II in conscious unrestrained rats. J. Cardiovasc. Pharmacol. 36:806-809.   DOI   ScienceOn
16 Schneider M, Vogt Weisenhorn DM, Seiler A, Bornkamm GW, Brielmeier M and Conrad M. 2006. Embryonic expression profile of phospholipid hydroperoxide glutathione peroxidase. Gene Expr. Patterns 6:489-94.   DOI
17 Martinez-Frias ML, Bermejo E, Rodriguez-Pinilla E and Frias J. 2004. Risk for congenital anomalies associated with different sporadic and daily doses of alcohol consumption during pregnancy: a case-control study. Birth Defects Res. A Clin. Mol. Teratol. 70:194-200.   DOI   ScienceOn
18 Miao L and St Clair DK. 2009. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47:344-356.   DOI   ScienceOn
19 Kim MR, Lee KN, Yon JM, Lee SR, Jin Y, Baek IJ, Lee BJ, Yun YW and Nam SY. 2008. Capsaicin prevents ethanol-induced teratogenicity in cultured mouse whole embryos. Reprod. Toxicol. 26:292-297.   DOI   ScienceOn
20 Migliaccio S and Anderson JJ. 2003. Isoflavones and skeletal health: are these molecules ready for clinical application? Osteoporos. Int. 14:361-368.   DOI   ScienceOn
21 Kotch LE, Chen S-E and Sulik KK. 1995. Ethanol-induced teratogenesis: free radical damage as a possible mechanism. Teratology 52:128-136.   DOI   ScienceOn
22 Lee SR, Kim MR, Yon JM, Baek IJ, Park CG, Lee BJ, Yun YW and Nam SY. 2009. Black ginseng inhibits ethanol-induced teratogenesis in cultured mouse embryos through its effects on antioxidant activity. Toxicol In Vitro 23:47-52.   DOI   ScienceOn
23 Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC and Epstein CJ. 1995. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11:376-381.   DOI   ScienceOn
24 Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M, Kitamoto T, Hayasaka M, Hanaoka K and Nakagawa Y. 2003. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun. 305:278-286.   DOI   ScienceOn
25 Livy DJ, Miller EK, Maier SE and West JR. 2003. Fetal alcohol exposure and temporal vulnerability: effects of bingelike alcohol exposure on the developing rat hippocampus. Neurotoxicol. Teratol. 25:447-458.   DOI   ScienceOn
26 Mahn K, Borrás C, Knock GA, Taylor P, Khan IY, Sugden D, Poston L, Ward JP, Sharpe RM, Viña J, Aaronson PI and Mann GE. 2005. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J. 19:1755-1757.
27 Dennery PA. 2007. Effects of oxidative stress on embryonic development. Birth Defects Res. C. Embryo Today 81:155-162.   DOI   ScienceOn
28 Green CR, Watts LT, Kobus SM, Henderson GI, Reynolds JN and Brien JF. 2006. Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin $F_{2{\alpha}}$ concentrations in the hippocampus of the perinatal guinea pig. Reprod. Fertil. Dev. 18:517-524.   DOI   ScienceOn
29 Guo Q, Rimbach G, Moini H, Weber S and Packer L. 2002. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology 176:171-180.
30 Bonacasa B, Siow RC and Mann GE. 2011. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 18:270-285.   DOI   ScienceOn
31 Abel EL and Hannigan JH. 1995. Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol. Teratol. 17:445-462.   DOI   ScienceOn
32 Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE and Vina J. 2006. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J. 20:2136-2138.   DOI   ScienceOn