• Title/Summary/Keyword: GPS-denied navigation

Search Result 13, Processing Time 0.025 seconds

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

AR Marker Detection Technique-Based Autonomous Attitude Control for a non-GPS Aided Quadcopter

  • Yeonwoo LEE;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2024
  • This paper addresses the critical need for quadcopters in GPS-denied indoor environments by proposing a novel attitude control mechanism that enables autonomous navigation without external guidance. Utilizing AR marker detection integrated with a dual PID controller algorithm, this system ensures accurate maneuvering and positioning of the quadcopter by compensating for the absence of GPS, a common limitation in indoor settings. This capability is paramount in environments where traditional navigation aids are ineffective, necessitating the use of quadcopters equipped with advanced sensors and control systems. The actual position and location of the quadcopter is achieved by AR marker detection technique with the image processing system. Moreover, in order to enhance the reliability of the attitude PID control, the dual closed loop control feedback PID control with dual update periods is suggested. With AR marker detection technique and autonomous attitude control, the proposed quadcopter system decreases the need of additional sensor and manual manipulation. The experimental results are demonstrated that the quadrotor's autonomous attitude control and operation with the dual closed loop control feedback PID controller with hierarchical (inner-loop and outer-loop) command update period is successfully performed under the non-GPS aided indoor environment and it enhanced the reliability of the attitude and the position PID controllers within 17 seconds. Therefore, it is concluded that the proposed attitude control mechanism is very suitable to GPS-denied indoor environments, which enables a quadcopter to autonomously navigate and hover without external guidance or control.

Loosely-Coupled Vision/INS Integrated Navigation System

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • Since GPS signals are vulnerable to interference and obstruction, many alternate aiding systems have been proposed to integrate with an inertial navigation system. Among these alternate systems, the vision-aided method has become more attractive due to its benefits in weight, cost and power consumption. This paper proposes a loosely-coupled vision/INS integrated navigation method which can work in GPS-denied environments. The proposed method improves the navigation accuracy by correcting INS navigation and sensor errors using position and attitude outputs of a landmark based vision navigation system. Furthermore, it has advantage to provide redundant navigation output regardless of INS output. Computer simulations and the van tests have been carried out in order to show validity of the proposed method. The results show that the proposed method works well and gives reliable navigation outputs with better performance.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Terrain-Based Localization using Particle Filter for Underwater Navigation

  • Kim, Jin-Whan;Kim, Tae-Yun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • Underwater localization is a crucial capability for reliable operation of various types of underwater vehicles including submarines and underwater robots. However, sea water is almost impermeable to high-frequency electromagnetic waves, and thus absolute position fixes from Global Positioning System (GPS) are not available in the water. The use of acoustic telemetry systems such as Long Baseline (LBL) is a practical option for underwater localization. However, this telemetry network system needs to be pre-deployed and its availability cannot always be assumed. This study focuses on demonstrating the validity of terrain-based localization techniques in a GPS-denied underwater environment. Since terrain-based localization leads to a nonlinear estimation problem, nonlinear filtering methods are required to be employed. The extended Kalman filter (EKF) which is a widely used nonlinear filtering algorithm often shows limited performance under large initial uncertainty. The feasibility of using a particle filter is investigated, which can improve the performance and reliability of the terrain-based localization.

Vision-based Reduction of Gyro Drift for Intelligent Vehicles (지능형 운행체를 위한 비전 센서 기반 자이로 드리프트 감소)

  • Kyung, MinGi;Nguyen, Dang Khoi;Kang, Taesam;Min, Dugki;Lee, Jeong-Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.627-633
    • /
    • 2015
  • Accurate heading information is crucial for the navigation of intelligent vehicles. In outdoor environments, GPS is usually used for the navigation of vehicles. However, in GPS-denied environments such as dense building areas, tunnels, underground areas and indoor environments, non-GPS solutions are required. Yaw-rates from a single gyro sensor could be one of the solutions. In dealing with gyro sensors, the drift problem should be resolved. HDR (Heuristic Drift Reduction) can reduce the average heading error in straight line movement. However, it shows rather large errors in some moving environments, especially along curved lines. This paper presents a method called VDR (Vision-based Drift Reduction), a system which uses a low-cost vision sensor as compensation for HDR errors.