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Abstract 
 
Underwater localization is a crucial capability for reliable operation of various types of underwater vehicles in-

cluding submarines and underwater robots. However, sea water is almost impermeable to high-frequency electro-
magnetic waves, and thus absolute position fixes from Global Positioning System (GPS) are not available in the 
water. The use of acoustic telemetry systems such as Long Baseline (LBL) is a practical option for underwater 
localization. However, this telemetry network system needs to be pre-deployed and its availability cannot always 
be assumed. This study focuses on demonstrating the validity of terrain-based localization techniques in a GPS-
denied underwater environment. Since terrain-based localization leads to a nonlinear estimation problem, nonli-
near filtering methods are required to be employed. The extended Kalman filter (EKF) which is a widely used 
nonlinear filtering algorithm often shows limited performance under large initial uncertainty. The feasibility of 
using a particle filter is investigated, which can improve the performance and reliability of the terrain-based loca-
lization. 

 
Keywords: Terrain-based localization, Underwater navigation, Particle filter, Extended Kalman filter 

 
 
1. Introduction 

Localization is a crucial capability for reliable 
operation of manned or unmanned vehicles includ-
ing aerial vehicles, ground vehicles, surface ships 
and underwater vehicles. For vehicles operated in 
open outdoor environments (e.g., aerial vehicles, 
surface ships), position information can be ac-
quired from the global positioning system (GPS), 
which provides absolute position fixes to correct 
drift errors from the inertial navigation system 
(INS). This integrated INS/GPS system is an ideal 
sensor combination and has been successfully ap-
plied to vehicle navigation applications. However, 
GPS signals are not available in the water, since 
sea water is almost impermeable to high-frequency 
electromagnetic waves. Instead, acoustic telemetry 
systems such as Long-Baseline (LBL) can be used 

for underwater localization and navigation. How-
ever, the use of an LBL system requires pre-
deployment of a set of baseline transponders on the 
sea floor, and its coverage is relatively limited 
compared with that of GPS. 
In this study, terrain-based localization that utiliz-

es subsea terrain information is addressed, which 
enables accurate and reliable localization and na-
vigation in a GPS-denied underwater environment 
without using acoustic telemetry systems. The ter-
rain-based localization algorithm focuses on mini-
mizing drift errors due to dead-reckoning or iner-
tial navigation by using drift-free position fixes 
with respect to the terrain. A key limitation of this 
terrain-based approach is that it is a map-based 
approach and thus requires the availability of a da-
tabase of seabed terrain. 
The seminal work of this kind is the Terrain Con-

tour Matching (TERCOM) algorithm [1] which 
was originally developed for cruise missiles and 
aircraft in the 1970s before GPS was fully opera-
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tional. The algorithm is still regarded to be impor-
tant since GPS is vulnerable to jamming, spoofing 
and other electronic interference.  
Terrain-based localization requires representing 

an undulating terrain surface as a mathematical 
function, which results in a highly nonlinear esti-
mation problem. The extended Kalman filter 
(EKF) which is perhaps the most widely used non-
linear filtering algorithm can be applied to the 
problem. However, it is well known that the EKF 
may not show satisfactory performance if a given 
system is highly nonlinear or has a large initial un-
certainty.  
This study suggests using a particle filter (PF) [2] 

in order to improve the performance and reliability 
of terrain-based localization, particularly under 
large initial uncertainty. To demonstrate the feasi-
bility of the proposed approach, a set of numerical 
simulations were performed.  
This paper is organized as follows. In Section 2, 

the particle filter algorithm is described. Then, in 
Section 3, the terrain-based localization problem is 
formulated into a nonlinear estimation problem. 
The results of numerical simulation are shown in 
Section 4, and finally the conclusion is given in 
Section 5. 
 

2. Particle Filter 

The particle filter is an approximation algorithm 
based on the Monte-Carlo method that describes 
uncertainty and a variety of hypothesis by many 
particles. The Monte-Carlo method requires lots of 
calculation to obtain reliable information. Thus, the 
use of particle filter was limited to relatively simple 
problems or offline applications. But as computing 
power increases through the development of com-
puter technology, particle filter can be used for 
various areas. Also, particle filters are widely used 
as real-time estimator for the navigation of un-
manned vehicles. 

Above all, the strength of the particle filter is that 
the estimator can be constructed without mathemat-
ical approximations for the given system model and 
sensor model. For example, in case of EKF which 
is a widely used nonlinear filtering algorithm, the 
system model is linearized and its uncertainty prob-
ability distributions such as disturbance and noise 
are approximated to normal distributions. Some 
system characteristics may disappear due to this 

model simplification and approximation. Therefore, 
the EKF often shows unsatisfied performance when 
nonlinearity is strong and uncertainty cannot be 
effectively described as a normal distribution [3]. 

On the other hand, the particle filter does not 
need the system and measurement model simplifi-
cation if those are defined mathematically. Thus, it 
is possible to construct a more realistic estimator 
model. However, the particle filter may be unsuita-
ble for complex systems operating at high update 
frequencies because the number of particles needed 
for the filter is rapidly increasing with the system’s 
state dimension.  

A pseudocode indicating the algorithm of the 
standard particle filter is shown in Table 1 [4]. 

 
Table 1. The algorithm of the standard particle filter (Thrun 

et al., 2005) 

Algorithm Particle Filter ( kk
N
i

i
k ,,}ˆ zux 11{   ) 

Input posterior sample set at k‐1: 
N
i

i
k }ˆ 11{ x  

Input control and measurement at k:: k,zu k  

N = number of particles 

 

for  1i   to N  

sample 
1

ˆ ˆ~ ( | , )
i i

k k k k
x p x x u  

ˆ( | )
i i

k k k
w p z x  

     end  

Normalize weights:  

calculate total weight  


N

i

i
kwW

1  

for i=1 to N 

normalize W/ww i
k

i
k :  

end 

Resampling step: 

for i=1 to N 

draw 
j
kx̂ with probability 

i
kw  

end 

Return posterior sample set at k: 
N
j

j
k }ˆ 1{ x

 

 

Real-time filtering basically calculates a pre-
dicted value by integrating the system model at 
every time step and performs correction of predic-
tion with given measurements. In case of particle 
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filter, the filter integrates the particle states to ob-
tain the prior probability density function first, 

 
                 (1) 
 

The likelihood of each particle is evaluated with 
the measurements. 
 

( | )l p z xk k k                            (2) 
 

Based on the likelihood, the importance factor is 
assigned to each particle, and then the posterior 
probability density function is obtained through 
resampling. 

 
( | , )p p x z uk k k k

                      (3) 
 
Recursive filtering is performed by repeating the 

above steps. 
The estimation is representative value calculated 

based on posterior probability density function. The 
weighted average is commonly used as the repre-
sentative value. 

 

3. Terrain-Based Localization 

To design an estimator for terrain-based localiza-
tion, a mathematical model of the system and mea-
surement should be defined. In this section, the 
mathematical model is derived in state-space form. 

 

3.1 System model 

Terrain-based localization techniques can be 
used in various types of vehicles. In particular, in 
underwater applications the techniques are more 
useful owing to the difficulty of position informa-
tion acquisition under the water surface. 

In principle, underwater vehicles undergo six de-
grees-of-freedom (DOF) motions, so a series of 
procedures including hydrodynamics and Euler 
angle transformation are necessary for a complete 
description of the motion. In this study, focusing on 
the feasibility of using a particle filter, a 3 DOF 
kinematic model in the horizontal plane is used to 
describe the vehicle motions. The equation of mo-
tion at this state space is expressed as follows. 
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where x  and y  are the position coordinates of 
the vehicle in the horizontal plane,   is the yaw 
angle, r  is the yaw rate and V  is the longitudin-
al velocity of the vehicle. 1u  and 2u  denote the 
control inputs of yaw angular acceleration and lon-
gitudinal acceleration, and 

2
(0 )~ ,w wNn   is the 

zero-mean Gaussian process noise. This noise is 
assumed to contain uncertainties of the system 
model, control inputs and environmental distur-
bance such as wave and current. 

 

3.2 Measurement model 

Relative position of the underwater vehicle from 
terrain surface in underwater environment can be 
measured using acoustic sensors such as Multibeam 
Echosounder (MBE), Doppler Velocity Log (DVL) 
and altimeters [5]. This study supposes using a so-
nar altimeter which is the simplest one among those. 
Unlike MBE, a sonar altimeter can measure the 
relative distance from a single point on the seabed. 
Although the amount of information is minimal, the 
use of an altimeter is relatively easy due to its con-
figurational simplicity. Basically, if the technique 
can be applied to a sonar altimeter, higher perfor-
mance is expected with using MBE or DVL. The 
use of sonar altimeter is, therefore, a fair and con-
servative assumption in this study. 

The employed measurement model is given be-
low. 
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where dz  is the measured relative distance, which 
is a vertical distance from the vehicle to the sea 
bottom, and h  is the function that represents the 
relation between the relative distance to the bottom 
and the horizontal position of the vehicle. Vz  and 

( | , )1p p x z uk k k k
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rz  denote the measured longitudinal velocity and 
angular velocity. 

2
(0 )~ ,v vNn   is the measure-

ment noise which is assumed to be a zero-mean 
Gaussian distribution. 

The function h  will have a complicated form 
and serious nonlinearity to express the curve of a 
sea bottom created by nature. Therefore, the linear 
approximation of this system depresses the reliabili-
ty of estimate, and the filter may diverge or con-
verge to a wrong value if the initial estimate is not 
sufficiently accurate in particular. The usefulness of 
the filter in terrain-based localization depends on 
how well such nonlinearity is dealt with. 

 

3.3 Estimator application 

An estimator is designed on the assumption of 
real-time operation and uses the particle filter algo-
rithm introduced in Section 2. A control block dia-
gram which represents the overall organization of 
the vehicle operation system is shown in Fig. 1. 

The part shown in dotted line in this figure indi-
cates the estimator which is the main subject in this 
study. As shown in the block diagram, the control 
input is obtained from the calculation between the 
output of the estimator and the reference input, 
which controls the motion of the vehicle. Because 
the control input directly affects the vehicle’s mo-
tion, the accuracy and reliability of the estimator 
output determine the overall control capacity of the 
vehicle. 

 

4. Numerical Simulation 

Numerical simulations were performed in order 
to quantitatively and qualitatively verify the validity 
of this study. The EKF simulation result is also 
presented for verification and comparison of the 
performance of the particle filter. 

 
Fig. 1.  Control block diagram 

4.1 Generating seabed terrain 

A 200 X 200 grid map of virtual seabed terrain 
was generated for numerical simulation. The shape 
of generated sea bottom is shown in Fig. 2. 

In the figure, artificial seabed terrain is generated 
to have a complex surface. 

 

Fig. 2.  Seafloor terrain elevation 
 

4.2 Simulation scenario 

In order to understand the robustness of filtering 
performance depending on the reliability and accu-
racy of the initial condition, two simulation scena-
rios are considered for both the EKF and the par-
ticle filter. One is under the small initial uncertainty 
and the other is under the large initial uncertainty. 

Initial settings and experimental parameters are 
shown in Table 2 and Table 3. 

 
Table 2 Initial settings and process noise parameters 

 
x 

(m) 

y 

(m) 

ψ 

(deg) 

r 

(deg/s) 

V 

(m/s) 

Initial Condi-
tion 

40.0 40.0 45.0 0.0 5.0 

σini: Initial  
Uncertainty  

10.0 
or 

50.0 

10.0 
or 

50.0 
10.0 10.0 1.0 

σw: Process 
Noise 

0.1 0.1 0.03 0.03 0.03 

 

Table 3 Measurement noise parameters 

 
Depth 

(m) 

V 

(m/s) 

r 

(deg/s) 

σv: Measurement 
Noise 

0.1 0.1 1.0 



 J. Kim and T. Kim / International Journal of Ocean System Engineering 1(2) (2011) 89-94         93 
 

 

 

Fig. 3.  Actual and estimated vehicle trajectories for small 

initial uncertainty (σ_x = σ_y = 10m) 
 

 

Fig. 4. Actual and estimated vehicle trajectories for large 

initial uncertainty (σ_x = σ_y = 50m) 
 

 

Fig. 5. Error comparison between the EKF and the particle 

filter for large initial uncertainty 
 

4.3 Experimental results 

Estimated vehicle trajectories obtained using the 
proposed terrain-based localization algorithm are 
shown in Figs. 3-5. The results compare the simula-
tion results of the EKF and the particle filter. Since 
different results can be obtained depending on 
which random numbers are used for simulations, 
each simulation uses the same pre-defined random 
number sequence for an objective performance 
comparison. These results are shown in Fig. 3 and 
Fig. 4. The vehicle moves from the initial position 
on bottom left(x=40m, y=40m) to top right in the 
figure. 

First, actual and estimated vehicle trajectories 
when the initial position reliability is large are 
shown in Fig. 3. As shown, both estimates by the 
EKF and the particle filter show satisfactory results. 
The linear approximation of the EKF is reasonable 
under the small initial uncertainty.  

However, the big difference in the result between 
the EKF and the particle filter under the large initial 
uncertainty can be found in Fig. 4. 

In Figure 4, the EKF yields wrong estimate 
which is different from the actual value and does 
not converge, which is believed to be due to the 
excessively large initial uncertainty. On the other 
hand, the particle filter, which first shows some-
what unstable result due to the large initial uncer-
tainty, converges to the actual one after a while.  

Figure 5 compares the position errors between 
the EKF and the PF for the simulation results with 
the large initial uncertainty, which clearly shows 
that the PF outperforms the EKF in terms of the 
filter’s robustness against initial uncertainty. 

 

5. Conclusions 

This study highlights the fact that terrain-based 
localization is a core technology for underwater 
vehicle operation and focuses on demonstrating the 
feasibility and validity of using the particle filter 
algorithm to improve the performance of terrain-
based localization. It is confirmed that the particle 
filter can significantly improve the reliability of 
terrain-based localization techniques, particularly in 
the presence of large initial uncertainty.  

The major effectiveness of the particle filter in 
contrast with the EKF comes from nonlinearity of 
the seabed terrain. Furthermore, if the measuring 
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characteristics (e.g., measurement errors with non-
Gaussian distributions) of acoustic sensors used in 
terrain-based localization are considered, the advan-
tage of particle filter will be greater. 
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