• Title/Summary/Keyword: GPS-RTK측량

Search Result 132, Processing Time 0.024 seconds

An Evaluation of the Accuracy of the Vertical Positioning by Distance Using Network RTK-GPS (Network RTK-GPS를 이용한 거리별 수직위치결정의 정확성 평가)

  • Mun, Du-Yeoul;Lee, Sung-Su;Kim, Myeong-Soo;Shin, Sang-Ho;Baek, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.54-63
    • /
    • 2013
  • In this paper, we evaluate the accuracy of the vertical positioning by distance using Network RTK-GPS. The experimental results confirm that Network RTK-GPS method can acquire data quickly and accurately than conventional leveling methods so that the Network RTK-GPS method is a relatively efficient and economical way for the vertical positioning. Results of validation using permanent GPS stations indicate that visible satellites, PDOP, and VDOP are very good for the vertical positioning. Integrated reference points such as U0997 and U0921 are satisfied with 3 ratings in the rules of public leveling and all the rest are proved improper. When the vertical positioning using Network RTK-GPS is implemented, the geoid height of EGM2008 should be applied for leveling. If the number of geodetic satellite are increasing in the near future, the vertical positioning using Network RTK-GPS can be possible in all the range.

The Accuracy Analysis of RTK-GPS by Field Calibration in Plane Surveying (국지측량에서의 현장 Calibration에 의한 RTK-GPS 정확도 분석)

  • Park, Woon-Yong;Shin, Dong-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.87-95
    • /
    • 2002
  • Real-time Kinematic GPS enables high accuracy Positioning by real time. If ambiguity use an integer solution, can obtain accuracy of several 'mm', and can obtain accuracy of tens 'em' if use real solution. In this study, We accomplish surveying by existent traditional surveying techniques (Total Station), Static GPS techniques and RTK-GPS techniques by Field Calibration about uniformity measuring point and then compared and ana1yzed each techniques positioning accuracy etc.. Result that achieve by Static-GPS in Plane area, about all measuring points, expressed error fewer than 3cm. Result that achieve RTK-GPS Surveying by Field Calibration in Plane area, could know that RTK-GPS techniques by Field Calibration is available in Plane area because expressing errors fewer than all 6cm, except case that do not get fixed solution of ambiguity Field Calibration RTK-GPS could know economically than existent conventional type measurement and existent GPS's measurement techniques that efficiency is very high.

  • PDF

Monitoring of Main Tower of a Suspension bridge by GPS and IMU (GPS와 IMU에 의한 현수교 주탑 모니터링에 관한 연구)

  • Lee, Jae-one
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2006
  • Aplications of the real-time kinematic GPS surveying and inertial measurement unit have been beingRTK GPS allows the use of a static base station and remote rover unit to allow for data collectionwithin several seconds and in real time. It is useful for monitoring the behaviors of massive structureslike bridges. And this study purposed to implement a method of deciding the acurate dynaimc attitudeof structures by IMU. In this study, among GPS methods, we used RTK GPS to analyze the precisionof monitoring and then on the basis of it, we developed a monitoring system using RTK GPS anda deviation betwen observation values, X axis was 1mm, Y axis was 1mm and Z axis 2.2mm. I tturned out that it was possible to monitor and measure structures by RTK GPS and IMU.

  • PDF

Assessing the Real-time Positioning Accuracy of Low-cost GPS Receiver using NTRIP-based Augmentation Service (Ntrip 기반 보정서비스를 활용한 저가 GPS 수신기의 실시간 측위 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2015
  • This paper presents the static and kinematic positioning accuracy by the real-time GPS positioning modes of the low-cost GPS receivers using NTRIP-based augmentation service. For this, acquires both the raw measurements data of the field tests by LEA 6T GPS module of u-blox AG, and correction communication via NTRIP caster with RTKLIB as an open source program for GNSS solution. With computing the positions of the check points and road tracks by six kinds of GPS positioning modes which are Single, SBAS, DGPS, PPP, RTK, and TCP/IP_RTK, compared these results to the reference position of the check points. The position error average and rmse of the static test by GPS L1 RTK surveying showed $N=0.002m{\pm}0.001m$, $E=0.004m{\pm}0.001m$ in horizontal plane, and $h=-0.116m{\pm}0.003m$ in vertical, these results are very closed to the coordinates with the geodetic receiver. Especially, in case of the kinematic test with obstacles located on both sides of road, the computed track with ambiguity fixing showed very similar trajectory considerably from VRS network RTK mode. And also, evaluate and verify the performance of the TCP/IP_RTK mode developed based on TCP/IP protocol.

Development of Bridge Warning System by Using GPS Surveying Method (GPS측량기법을 이용한 교량경보시스템 개발)

  • 서동주;노태호;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2002
  • A recently lot of facilities have been constructed from rapidly development of science and economic growth. Among them, bridges are tending to be large because of geometrical problems of the road. And then the method of satellite surveying is being practical use variously out of present surveying methods. Therefore in this study it takes a measurement of bridge displacement using the RTK GPS Mode instead of the using mechanical measurement system. The observation value was verified by using Total Station to inspect observation value of RTK GPS. And then, by using the Delphi of object intending language, developed bridge warning system and applied it. The result of this study was found verification error of 0.2~8.3mm, therefore the measurement of bridge displacement of grand bridge can be applied by using An GPS.

A study on the application of RTK-GPS by using CDMA (CDMA를 이용한 RTK-GPS 적용 연구)

  • 배경호;박운용;이기부;이동락
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.65-69
    • /
    • 2004
  • 기존 라디오파를 이용한 RTCM 방식에서는 전파의 직진성으로 인한 수신 장애가 많이 발생하였다. 이런 문제를 극복하기 위해 라디오 모뎀을 사용하지 않고 휴대폰에 내장된 CDMA 방식을 이용하여 이동전화국 기지국을 통한 오차 보정량을 전송하여 RTK-GPS의 문제점을 해결하고자 하였다. 연구 결과 기존 RTCM 방식과 같은 건물 차폐에 따른 신호 차단의 영향은 없었으며, 제적 작업 시에도 라디오 모뎀의 송수신의 장애로 인한 데이터 손실을 막을 수가 있었다. 마지막으로 10km이상의 거리에서도 작업을 수행하였다. 그 결과 이동전화국 기지국을 이용하였기 때문에 신호의 송수신에는 문제가 없었지만, 공간적 상관성의 문제로 인해 그 값을 쓸 수가 없었다. 따라서, 최근 증가하고 있는 GPS 측량 기법 중에서 현장에서 손쉽게 성과 값을 구하는 실시간 이동측량(RTK GPS Real Time Kinematic GPS)의 문제점을 보완하고 그 효율성을 제고하였다.

  • PDF

Accuracy Evaluation of Internet RTK GPS by Satellite Signal Reception Environment (위성 수신환경 변화에 따른 인터넷 RTK GPS 측량의 정확도 평가)

  • Kim, Min Gyu;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • GPS RTK surveying has an issue that the positioning error increases as the base line distance between the reference station and rover station increases. However, nowadays, an accuracy assessment that can handle such issue is surely required because of the modernization of GLONASS, Galileo project, and other improvements of satellite receiving conditions. Therefore, in this research, we compared and analyzed data sets collected with the CORS network, placed at NGII and NDGPS, using Internet RTK surveying in different satellite receiving conditions. As a result, there was a negative effect on the positioning accuracy as the base line distance increases. Furthermore, we could collect quantitative data of the accuracy of RTK surveying. When national-wide GNSS system is fully established, this result will contribute the growth of various GNSS industries including survey industries and land survey industries.

Development of Earth Fill Management System using Real-Time Kinematic GPS (실시간 GPS를 이용한 현장 성토다짐 관리시스템 개발)

  • 심정민;윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.271-279
    • /
    • 1998
  • This paper discusses the development of compaction management system using Real Time Kinematic (RTK) GPS technology for the efficient management or compaction. The use or RTK provides the land surveyors with a graphical display of his/her corrected position on the ground at that moment in time. In this work, we intended to improve the efficiency of compaction management showing the route of rollers and the total number of compaction obtained from management software (GPSROLL v.1.0) developed in this study. The RTK GPS system installed on the roller. To improve the efficiency of field management, GPSROLL software provides also data processing module for the field soil test and the field surveying data. GPSROLL system is based on the Korean GUI for user-friendly data input and output.

  • PDF

A Study on Marine Pile Construction Management by Real-Time Kinematic GPS Positioning (RTK-GPS 측량에 의한 해상파일 시공관리에 관한 연구)

  • 강길선
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2003
  • Automatic control technologies for the marine pile driving provides accurate and rapid intruding into the planned positions of the pile with planned slope and direction, so that the construction maintenance and management are more efficient and the quality of the construction is more promising. Therefore, in this study, the application scheme of RTK GPS to the automatic control of the pile driving presented. It is expected that the presented scheme using the precise RTK GPS technique assures the efficient and economic 3D positioning accuracy for the precise marine construction management like the precise foundation of marine structures made of piles and the dredging work. It is found that the suggested scheme decrease 60% of the construction error compared with specifications reference because marine position accuracy is measured within 4cm in real time. In addition, the automatic position control system using GPS reduced the construction period and cost compared with existing methods about 30% and 35%, respectively.