• Title/Summary/Keyword: GPS time

Search Result 1,603, Processing Time 0.027 seconds

Analysis of Coast Topography by RTK GPS and Echo Sounder

  • Lee, Jea-One;Kim, Jin-Soo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Measuring the depth of water is very important in ensuring the protection and safety of seaside. There are many difficulties in making the contour bathymetric map, and contour line due to the limitation of continuous measurement of water depth and collimation with the conventional measuring and positioning methods. But the real-time kinematic GPS (RTK GPS) positioning using a carrier phase enables us to decide a precise position without breaking a signal even under the condition of a moving environment. It is also possible to obtain an accurate depth of water in real time with a fathometer through the measuring of time delay between sending and receiving epochs. This research aims at investigation of accuracy potential of RTK GPS in combination with Echo Sounder(E/S) for the coastal mapping. Apart from this purpose, the accuracy of ambiguity resolution with the OTF(On the Fly) method was tested with respect to the initialization time. The result shows that the accuracy is better than 1cm with 5-minute initialization in the distance of 10km baseline. The seaside topography was measured by the RTK GPS only, on the other hand the seafloor topography was surveyed in combination of RTK GPS and E/S. Comparing to the volume of seaside measured by RTK GPS and digital topographical map, the difference of only 2 % was achieved. This indicates that the coastal mapping with RTK GPS is successfully conducted. In addition it is also demonstrated that the 3-dimensional perspective model resulted from the undersea topography measured by RTK GPS and E/S is very close to that from the digital map. Through this study, it was verified that RTK GPS is to be very useful method in the analysis of coastal morphology owing to its capability of getting the precise DTM for the using of harbor reclamation, dredging, and the estimation of soil movement in a river.

  • PDF

Effects of Tropospheric Delay Models for GPS Time Transfer (GPS 시각 전송에서의 대류층 지연 모델 영향 비교)

  • Yu, Donghui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.139-141
    • /
    • 2014
  • This paper shows effects of tropospheric delay models among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link uses the software and send the CGGTTS results periodically. Though Saastamoinen model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models implementing Saastamoinen model and Niell mapping function for the time offset.

  • PDF

DEVELOPMENT OF REAL-TIME PRECISE POSITIONING ALGORITHM USING GPS L1 CARRIER PHASE DATA (GPS L1 반송파 위상을 이용한 실시각 정밀측위 알고리즘 구현)

  • 조정호;최병규;박종욱;박관동;임형철;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.377-384
    • /
    • 2002
  • We have developed Real-time Phase DAta processor(RPDAP) for GPS L1 carrie. And also, we tested the RPDAP's positioning accuracy compared with results of real time kinematic(RTK) positioning. While quality of the conventional L1 RTK positioning highly depend on receiving condition, the RPDAP can gives more stable positioning result because of different set of common GPS satellites, which searched by elevation mask angle and signal strength. In this paper, we demonstrated characteristics of the RPDAP compared with the L1 RTK technique. And we discussed several improvement ways to apply the RPDAP to precise real-time positioning using low-cost GPS receiver. With correcting the discussed weak points in new future, the RPDAP will be used in the field of precise real-time application, such as precise car navigation and precise personal location services.

LEO Satellite Time Synchronization Architecture

  • Kwon, Ki-Ho;Kim, Day-Young;Lee, Jong-In;Kim, Hak-Jung;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-370
    • /
    • 2006
  • A GPS-based time synchronization technique employing a refined HW circuitry and SW algorithm is considered as fine time-management system for Low Earth Orbit (LEO) remote sensing satellites. By synchronizing the On-Board Time (OBT) within satellites to the GPS 1PPS, a very expensive, highly accurate on-board clock is not required to determine the precise on-board time management. Also, the satellite command generation in ground stations and postprocessing of earth observation data which a particular image is acquired. This paper analyses on-orbit verification of the existing satellite time sync architecture and presents a new time sync architecture, operation and relation between the OBT and the GPS time.

  • PDF

TDoA-Based Practical Localization Using Precision Time-Synchronization (정밀 시각동기를 이용한 TDoA 기반의 위치 탐지)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.141-154
    • /
    • 2013
  • The technology of precise time-synchronization between signal receive devices for separation distance operation can be a key point for the technology with TDoA-based system. We propose a new method for the higher accuracy of system's time-synchronization in this paper, which uses OCXO and DPLL with high accuracy to achieve phase synchronization at 1 pps (pulse per second) of signal. And the method receive time value from a GPS satellite. Essentially, the performance of GPS with high accuracy refers to long-term frequency stability for its reliability. As per the characteristic, as the GPS timing signals are synchronized continuously, the accuracy of time-synchronization gets improved proportionally. Therefore, if the time synchronization is accomplished, the accuracy of the synchronization can be up to 0.001 ppb (part per billion). Through the improved accuracy of the time-synchronization, the measurement error of TDOA-based location detection technology is evaluated. Consequently, we verify that TDoA-based location measurement error can be greatly improved via using the improved method for time-synchronization error.

Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation (가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법)

  • Yoo, Seungsoo;Lee, Junghyuck;Han, Jin Hee;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.

A Base Study on the Accuracy Analysis of GPS Kinematic Surveying of the Long-Baseline According to the Ephmeris (궤도력에 따른 장기선 GPS 이동측량의 정확도 분석에 관한 기초연구)

  • 강준묵;이용욱;박정현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • Kinematic GPS surveying which can obtain much 3D topographical information through short-time measurement is being utilized mainly in the short baseline less than a few kilometers. Because the decision of position for the long baseline depends on the static GPS surveying which needs long time measurement, the method for measuring the position of long baseline is needed. In this study, the accuracy of the baseline according to the baseline distance, ephemeris, and observation time by GPS surveying is analysed to confirm the application of kinematic GPS surveying for the long baseline. As the result of this, the acquisition of 3D topographical information by GPS surveying in a few minutes will be possible when PDOP is less than 4, and the fast precise ephemeris is used within 60 km. Also, the accuracy is similar to that of final precise ephemeris of IGS. If a lot of studies about the long baseline kinematic GPS surveying are processed, the acquisition of topographical information for various industry including land development will be obtained more efficiently.

  • PDF

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS (실시간 응용을 위한 GPS 정밀 궤도력 결정)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris arid earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC arid covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations.

  • PDF

A Study on the Coast Topography using Real-Time Kinematics GPS and Echo Sounder

  • Park, Woon-Yong;Kim, Jin-Soo;Kim, Cheon-Yeong
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • This research aims at investigation of accuracy potential of RTK(Real-Time Kinematic) GPS in combination with Echo Sounder(E/S) for the coastal mapping. Apart from this purpose, the accuracy of ambiguity resolution with the OTF(On The Fly) method was tested with respect to the initialization time. The result shows that the accuracy is better than 1cm with 5-minute initialization in the distance of 10km baseline. The seaside topography was measured by the RTK GPS only, on the other hand the seafloor topography was surveyed in combination of RTK GPS and E/S. Comparing to the volume of seaside measured by RTK GPS and digital topographical map, the difference of only 2% was achieved. This indicates that the coastal mapping. As a result, it has been revealed that every possible noise in surveying could be corrected and the accuracy could be improved. The accuracy of GPS data acquired in real time was as good as that acquired by post processing. It is expected that it will be useful for the analysis of coastal geographic characteristics because DTM(Digital Terrain Model) can be also constructed for the harbor reclamation, the dredging, and the variation of soil movement in a river.

  • PDF