• Title/Summary/Keyword: GPS satellite

Search Result 872, Processing Time 0.041 seconds

Performance Enhancement of GNSS Positioning using European Galileo System (유럽의 Galileo 시스템을 이용한 GNSS 측위 성능 향상)

  • Bae Kyoung-Ho;Heo Min;Lee Yong-Wook;Lee Jae-One
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.33-37
    • /
    • 2006
  • After USA removed the Selective Availability(SA), Global Positioning System(GPS) has monopolized tile world market and other countries have been depended on GPS, absolutely So the other countries, Russia, European Community(EC) and Japan, which apprehend to monopolize in technical and strategic parts, are developing the next generation GNSS including GLONASS Galileo and JRANS. And the countries are planning to provide the another GNSS. This research has focused on the next generation GNSS system based on GPS and Galileo system with developing a GNSS simulation software, named as GIMS2005, which generates and analyzes satellite constellation and measurements. Based on the software, a variety of simulation tests have been carried out to recognize limits of GPS-only system and potential benefits of integrated GPS/Galileo positioning In terms of satellite geometry strength and solution accuracy.

  • PDF

A study on development of a map display and matching software for an automatic car navigation system (GPS 위성을 이용한 자동차용 자동항법장치용 소프트웨어 개발에 관한 연구)

  • 장성호;이기혁;우창헌;김동우;윤재경;김수용
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.2
    • /
    • pp.35-49
    • /
    • 1993
  • The GPS satellite system, a satellite system for global positioning, is making itself more and more useful for various kinds of civil application and especially for the automatic car navigation system. A simple map display and matching system can be developed combining the position information from the GPS satellites and the accurate digiral map stored in a digital form. In this paper, the structure and the implementation details of the software half of the system and the testing results of the system are presented.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

The Abnormal Increasing Pseudorange Satellite Detection Method Using Comparison of Residual Horizontal Projection (잔차 수평 투영 비교를 이용한 의사거리 비정상 증가 위성 식별)

  • Ahn, Yong-Woon;Ahn, Jong-Sun;Won, Dae-Hee;Heo, Mun-Beom;Jo, Jeong-Ho;Sung, Sang-Kyung;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.570-576
    • /
    • 2010
  • This paper can be used for GPS air navigation study on integrity monitoring algorithm as, the projected horizontal plane using GPS pseudorange residuals for fault detection satellites were suspected. Failure to remove the detected suspicious satellite, compare with threshold which is calculated using satellite deployment (PDOP) and determine whether the failure is presented. The theory that horizontal projection of the satellite failure residuals greater than residual of normal satellite is proved mathematically. Comparison with horizontal projection residuals are likely to malfunction in the satellite were presented. To evaluate the proposed algorithm, bias fault insert into GPS pseudorange, and compare with conventional parity space method about fault detection and isolation capability.

Metamaterial Beamforming Array Antenna Feeds for Anti-Jamming Functions of GPS Signal (GPS신호 항재밍 특성을 위한 수신용 메타재질 급전구조 빔조향 배열 안테나의 설계)

  • Park, Heejun;Han, Dajung;Lee, Changhyeong;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 2017
  • This paper presents an approach to enable a typical GPS receiver to be much less susceptible to intentional disruption such as jamming and change in link environment. In order for the GPS receiver to cope with jamming and to get adaptivity, a $4{\times}4$ beamforming antenna is designed using metamaterials. The design results show the antenna gain much higher than 5 dBi and the movable beam.

A Periodic Analysis of Sidereal Shifts for GPS Satellites and the Solar Wind Stream

  • Cho, Changhyun;Choi, Byung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • The sidereal day of a Global Positioning System (GPS) satellite was intended to equal one half of a sidereal day of the Earth. However, the sidereal day of GPS satellites has become unequal to one half of a sidereal day of the Earth. This is fundamentally caused by the non-sphericity of the Earth and the gravity of the Moon. The difference between sidereal days of GPS satellites and the Earth is known as a sidereal shift. The details surrounding sidereal shifts and their origins have yet to be fully understood. We calculated the periodicity of sidereal shifts for GPS satellites using broadcast ephemeris data. To conduct a periodic analysis of the sidereal shift, we employ the Lomb-Scargle periodogram method. It shows that the orbit periods of GPS satellites have small-amplitude perturbations with a 13.6-day period. In addition, we compare the GPS satellite orbit periods with the periodicity of geomagnetic indices and the solar wind parameters to identify the cause of the perturbations. Our results suggest that the solar wind stream might also affect the 13.6-day period of the sidereal shifts.

아리랑 위성 2호의 시간동기

  • Kwon, Ki-Ho;Kim, Dae-Young;Chae, Tae-Byung;Lee, Jong-In
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.109-116
    • /
    • 2004
  • In a satellite time management system, the GPS-based clock synchronization technique[1] has the merits of precision time management by knowing the time difference or the error between the OBT(On Board Time) of the internal processors and GPS time every second. It can be realized employing the DPLL(Digital Phase Loop Lock) and FEP(Front End Processor) circuitry for the clock synchronization[2]. In this paper, a refined DPLL & FEP scheme is proposed to provide the precision, stability and robustness of the operation, which is to compensate the errors and noise of the GPS signal, and also to cope with the case when the GPS signal is lost due to several reasons. The simulation and HIL (Hardware In the Loop) test results using the FM(Flight Model) in the course of KOMPSAT-2(Korea Multi Purpose Satellite-2) design and development are illustrated to demonstrate the salient features of this methodology.

  • PDF

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

Design and Implementation of Combined RF Receiver Front End for GPS/GLONASS (GPS/ GLONASS 통합 수신용 RF 전단부의 설계 및 제작)

  • 주재순;염경환;이상정
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.494-502
    • /
    • 2001
  • GPS(Global Positioning System) and GLONASS(GLObal Navigation Satellite System) are basic technologies providing the information of the position and the time, and they have various applications such as navigation, survey, control, and so on. However, each GPS and GLONASS has limited number of visible satellites, and, from the view of strategy, it is undesirable to be heavily dependent on only one system. Thus, GPS/GLONASS combined receiver became required to obtain more precise navigation and system stability. In this paper, the RF front end of GPS/GLONASS combined receiver was fabricated on 130$\times$80 $\textrm{mm}^2$ PCB(Printed Circuit Board), and its system application was shown finally one chip possibility of GLONASS receiver is studied.

  • PDF