• Title/Summary/Keyword: GPS positioning error

Search Result 373, Processing Time 0.026 seconds

A Study on Marine Pile Construction Management by Real-Time Kinematic GPS Positioning (RTK-GPS 측량에 의한 해상파일 시공관리에 관한 연구)

  • 강길선
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2003
  • Automatic control technologies for the marine pile driving provides accurate and rapid intruding into the planned positions of the pile with planned slope and direction, so that the construction maintenance and management are more efficient and the quality of the construction is more promising. Therefore, in this study, the application scheme of RTK GPS to the automatic control of the pile driving presented. It is expected that the presented scheme using the precise RTK GPS technique assures the efficient and economic 3D positioning accuracy for the precise marine construction management like the precise foundation of marine structures made of piles and the dredging work. It is found that the suggested scheme decrease 60% of the construction error compared with specifications reference because marine position accuracy is measured within 4cm in real time. In addition, the automatic position control system using GPS reduced the construction period and cost compared with existing methods about 30% and 35%, respectively.

Design and Algorithm Verification of Precision Navigation System (정밀항법 시스템 설계 및 알고리즘 검증)

  • Jeong, Seongkyun;Kim, Taehee;Lee, Jae-Eun;Lee, Sanguk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • As GNSS(Global Navigation Satellite System) is used in various filed, many countries establish GNSS system independently. But GNSS system has the limitation of accuracy and stability in stand-alone mode, because this system has error elements which are ionospheric delay, tropospheric delay, orbit ephemeris error, satellite clock error, and etc. For overcome of accuracy limitation, the DGPS(Differential GPS) and RTK(Real-Time Kinematic) systems are proposed. These systems perform relative positioning using the reference and user receivers. ETRI(Electronics and Telecommunications Research Institute) is developing precision navigation system in point of extension of GNSS usage. The precision navigation system is for providing the precision navigation solution to common users. If this technology is developed, GNSS system can be used in the fields which require precision positioning and control. In this paper, we introduce the precision navigation system and perform design and algorithm verification.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

Real time GPS position correction using a camera and the vanishing point when a vehicle runs (카메라와 무한원점을 이용한 주행중 실시간 GPS 위치 보정)

  • Kim, Bo-Sung;Jeong, Jun-Ik;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.508-510
    • /
    • 2004
  • In this paper, we proposed the GPS position data correction method for autonomous land navigation using vanishing point property and a monocular vision system. Simulations are carried out over driving distances of approximately 60 km on the basis of realistic road data. In straight road, the proposed method reduces GPS position error to minimum more than 63% and positioning errors within less than 0.5m are observed. However, the average accuracy of the method is not presented. because it is difficult to estimate it in curve road or other road environments.

  • PDF

High Precision GPS Positioning Referred to ITRF (ITRF에 준거한 정밀 GPS 측위에 관한 연구)

  • 윤홍식;황진상;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.251-261
    • /
    • 2000
  • This paper deals with the precision analysis of GPS measurement referred to ITRF96 which is the new reference frame announced in 1996, and show the data processing results of short and long baselines with different methods. In this paper, we minimized the observation error of GPS using precise ephemerides which has provided by Jet Propulsion Laboratory and represents the comparative analysis results of baseline measurements using GIPSY-OASIS II software. Here, we also discussed the accuracy of data processing methods.

  • PDF

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

GPS Satellite Repeat Time Determination and Orbit Prediction Based on Ultra-rapid Orbits (초신속궤도력 기반 GPS 위성 repeat time 산출 및 궤도 예측)

  • Lee, Chang-Moon;Park, Kwan-Dong;Kim, Hye-In;Park, Jae-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2009
  • To plan a GPS survey, they have to decide if a survey can be conducted at a specific point and time based on the predicted GPS ephemeris. In this study, to predict ephemeris, we used the repeat time of a GPS satellite. The GPS satellite repeat time was determined by analysing correlation among three-dimensional satellite coordinates provided by the 48-hour GPS ephemeris in the ultra-rapid orbits. By using the calculated repeat time and Lagrange interpolation polynomials, we predicted GPS orbits f3r seven days. As a result, the RMS of the maximum errors in the X, Y, and Z coordinates were 39.8 km 39.7 km and 19.6 km, respectively. And the maximum and average three-dimensional positional errors were 119.5 km and 48.9 km, respectively. When the maximum 3-D positioning error of 119.5 km was translated into the view angle error, the azimuth and elevation angle errors were 9.7'and 14.9', respectively.

Performance Analysis of GPS Anti-Jamming Method Using Dual-Polarized Antenna Array in the Presence of Steering Vector Errors

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2020
  • The antenna arrays are known to be effective for GPS anti-jamming and the performance can be improved further if a dual-polarized antenna array is used. However, when the Minimum Variance Distortionless Response (MVDR) beamformer is used as a signal processing algorithm for the dual-polarized antenna array, the anti-jamming performance can degrade in the presence of errors in the steering vector that is a key factor of the MVDR beamformer. Therefore, in this paper, the effect of the steering vector error on the anti-jamming performance of the dual-polarized antenna array is analyzed by simulations and the result is compared to that of the single-polarized antenna array.

A RINEX-level Preprocessing for Real-time GNSS Positioning (실시간 GNSS 위치결정을 위한 RINEX 자료 전처리 연구)

  • Park, In-Suk;Bae, Tea-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.183-185
    • /
    • 2010
  • There are many error sources in GPS signal propagation because the signals do not propagate in vacuum. The GPS observations should be preprocessed before they are used for positioning. The cycle slip and outlier detection algorithms are tested in this study in RINEX level using various linear combinations of the observables. The elbourne-Wubbena (M-W) linear combination has an advantage of long wavelength with low noise, and the geometry-free and ionosphere-free linear combinations are used as well to clean the measurements.

  • PDF

Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation (가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법)

  • Yoo, Seungsoo;Lee, Junghyuck;Han, Jin Hee;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.