• Title/Summary/Keyword: GPS phase measurement

Search Result 83, Processing Time 0.024 seconds

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Hou, Dai-Jin;Hamada, Masaaki;Nakama, Yoshiyasu;Kouguchi, Nobuyoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.49-55
    • /
    • 2006
  • Kinematic GPS provides quite good accuracy of position in cm level. Though K-GPS assures high precision measurement in cm level on the basis of an appreciable distance between a station and an observational point, but it has measurable distance restriction within 20 km from a reference station on land. So it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction. In this paper, the velocity integration method to get the precise velocity information of ship is explained. Next two experimental results (Zig-zag maneuvering test and Williamson turn) as the ship's maneuvering test and also the experimental results of leaving and entering port as slow speed ship's movement were shown. In these experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

  • PDF

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

The Anti-Spoofing Methods Using Code Antiphase of Spoofing Signal (역 위상 코드를 이용한 기만신호 대응방법)

  • Kim, Taehee;Lee, Sanguk;Kim, Jaehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1044-1050
    • /
    • 2013
  • This paper analyzes what is mitigated as spoofing attack using the U-Blox Receiver and GPS RF signal generator developed at ETRI. Generally the spoofing attack made the target receiver to be wrong navigation solution by providing false measurement of code and carrier. So we analyzed the impact of spoofing attack through the signal strength and navigation solution. In oder to test of effect of anti-spoofing signal, we consider the signal with antiphase code to spoofing signal and generated GPS normal signal and spoofing signal and anti-spoofing signal using GPS RF signal generator. This paper analyzed that the GPS receiver was responded to the spoofing attack according to code phase difference between spoofing and anti-spoofing signal. We confirmed that the spoofing signal was disappeared by anti-spoofing signal if code phase is an exact match.

Improving Estimation Accuracy of Satellite Clock Error for GPS Satellite Clock Anomaly Detection (GPS 위성 시계 이상 검출을 위한 위성 시계 오차 추정 정확도 향상)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • The satellite clock anomalies, one of the abnormal signal factors of the GPS satellites, can have a significant impact on the GPS measurements. However, it can be difficult to detect the anomalies of the satellites clock before the range of the satellites clock error becomes bigger than the range of the other factors, due to the measurement including error of the orbit, ionosphere delay, troposphere delay, multipath and receiver clock. In order to perform quick and accurate detection by minimization of critical range in anomalies of the satellites clock, this paper suggested a solution to detect precise anomalies of the satellites clock after application of carrier smoothing filter from measurement by dual-frequency and adjustment of errors which can be occurred by other factor and the receiver clock errors. The performance of the proposed method was confirmed by comparing to the satellite clock biases which are provided by IGS.

Fast Ambiguity Resolution using Galileo Multiple Frequency Carrier Phase Measurement

  • Ji, Shengyue;Chen, Wu;Zhao, Chunmei;Ding, Xiaoli;Chen, Yongqi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.179-184
    • /
    • 2006
  • Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when very precise carrier-phase observations can be used. There are two kinds of mathematical models for ambiguity resolution. The first one is based on both pseudorange and carrier phase measurements, and the observation equations are of full rank. The second one is only based on carrier phase measurement, which is a rank-defect model. Though the former is more commonly used, the latter has its own advantage, that is, ambiguity resolution will be freed from the effects of pseudorange multipath. Galileo will be operational. One of the important differences between Galileo and current GPS is that Galileo will provide signals in four frequency bands. With more carrier-phase data available, frequency combinations with long equivalent wavelength can be formed, so Galileo will provide more opportunities for fast and reliable ambiguity resolution than current GPS. This paper tries to investigate phase only fast ambiguity resolution performance with four Galileo frequencies for short baseline. Cascading Ambiguity Resolution (CAR) method with selected optimal frequency combinations and LAMBDA method are used and compared. To validate the resolution, two tests are used and compared. The first one is a ratio test. The second one is lower bound success-rate test. The simulation test results show that, with LAMBDA method, whether with ratio test or lower bound success rate validation criteria, ambiguity can be fixed in several seconds, 8 seconds at most even when 1 sigma of carrier phase noise is 12 mm. While with CAR method, at least about half minute is required even when 1 sigma of carrier phase noise is 3 mm. It shows that LAMBDA method performs obviously better than CAR method.

  • PDF

Effects of observation parameters on time transfer using GPS

  • Lee, Seung-Woo;Lee, Chang-Bok;Yang, Sung-Hoon;Lee, Young-Kyu;Han, Ji-Ae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.113-116
    • /
    • 2006
  • In order to fully utilize the inherent precision that GPS observables could offer, accurate estimation of dynamic and measurement parameters is vital. Among these parameters some are indispensable in virtually every form of GPS processing, while some are limitedly relevant to a particular application. In the context of time transfer by GPS, the transmission-related errors such as ionospheric and tropospheric delays, and the integer ambiguity of the carrier phase observables belong to the former, the atomic clock parameters and data batch-related parameters to the latter. Obviously the atomic clock parameters are of prime importance in GPS time transfer. In this study some of important parameters in conducting time transfer experiments by use of GPS were characterized and their effects on time transfer performance were investigated in detail

  • PDF

The Comparison and Analysis of Maritime Precise Positioning using GPS Based Smartphone

  • Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.217-226
    • /
    • 2018
  • According to the Korea Coast Guard's maritime disaster statistics (Korea Coast Guard 2017, Korean Statistical information Service 2018), an average of 2,140 marine accidents occurred every year for the past 6 years and the number of accidents is increasing every year. Among them, maritime accidents of fishing vessels are the most frequent, and recently accidents involving fishing boat and leisure vessels are rapidly increasing as well. In particular, the number of accidents involving leisure vessels increased to about one-third of the accidents of fishing vessels, and emergency rescue requests are increasing every year accordingly. However, the number of crash accidents involving users of small vessels and marine leisure activities are increasing because of the difficulties of installing navigation equipment and electronic navigation charts. Recently, the demand for precise positioning using mobile devices is increasing in the fields of maritime safety, piloting support, and coastal survey. Although various applications of smart devices provide location-based services for users, the measurement results are discontinuous when using the position coordinates of the National Marine Electronics Association (NMEA) calculated by smartphone. Recently, Google announced that they will provide GPS raw data to developers from Android 7.0 Nougat. As a result, developers have an opportunity to receive precise carrier phase and code measurements to make more accurate positioning according to the performance of Android devices. This study analyzed GPS positioning performance using Android devices, and compared and analyzed the positioning performance at sea with high-performance GPS receivers.

Estimation of GPS Holdover Performance with Ladder Algorithm Used for an UFIR Filter (UFIR 필터 Ladder 알고리즘 이용 GPS Holdover 성능 추정)

  • Lee, Young-kyu;Yang, Sung-hoon;Lee, Chang-bok;Heo, Moon-beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, we described the simulation results of the phase offset performance of a clock in holdover mode which was normally operated in GPS Disciplined Oscillator (GPSDO). In the TIE model, we included the time error term caused by environmental temperature variation because one of the most important parameters of clock phase error is the frequency offset and drift caused by the variation of temperature. For the simulation, we employed Maximum Time Interval Error (MTIE) for the performance evaluation when the frequency offset and drift are estimated by using an Unbiased Finite Impulse Response (UFIR) filter with ladder algorithm. We assumed that the noise in the GPS measurement is white Gaussian with zero mean and 1 ns standard deviation, and temperature linearly varies with a slope of $1{^{\circ}C}$ per hour. From the simulation results, the followings were observed. First, with the estimation error of temperature of less than 3 % and the temperature compensation period of less than 900 seconds, the requirement of CDMA2000 phase synchronization under 10 us could be achieved for more than 40,000 seconds holdover time if we employ an OCXO (Oven Controlled Crystal Oscillator) clock. Second, in order to achieve the requirement of LTE-TDD under 1.5 us for more than 10,000 seconds holdover time, below 3 % estimation error and 500 seconds should be retained if a Rubidium clock is adopted.

Using DGPS as An Acceleration Sensor for Airborne Gravimetry

  • Zhang, Kaidong;Shen, Lincheng;Hu, Xiaoping;Wu, Meiping
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.327-332
    • /
    • 2006
  • In airborne gravimetry, there are two data streams. One is the specific force measured by an air/sea gravimeter or accelerometers, the other is kinematic acceleration measured by DGPS. And the difference of them provides the gravity disturbance information. To satisfy the requirement of most applications, an accuracy of 1mGal $(1mCal=10^{-5}m/s^{2})$ with a spatial resolution of 1km is the aim of current airborne gravimetry. There are two different methods to derive the kinematic acceleration. The generally used method is to differentiate the position twice, and the position can be calculated by commercial DGPS software. The main defect of this method is that integer ambiguities need to be fixed to get the precise position solution, but it's not a trivial thing for long base line. And to fix integer ambiguities, the noisier iono-free measurement is used. When differentiation is applied, noise is amplified and will influence the accuracy of acceleration. The other method is to get carrier phase acceleration by differentiate the carrier phase first, and then using the acceleration of GPS satellite to derive the vehicle acceleration. The main advantages include that fixing integer ambiguities is not needed anymore, position can be relaxed to about 10 meters, and smoother acceleration can be got since iono-free measurement is not needed. In some literatures, it's considered that the dynamic performance of the second method is inferior to that of the first. Through analysis, it is found that the performance degradation in dynamic environment results from the simplification of the GPS carrier phase observable model. And an iterative algorithm is presented to compensate the model error. Using a dynamic GPS data from an aeromagnetic survey, the importance of this compensation is showed at last.

  • PDF