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Abstract 
 

Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when very 
precise carrier-phase observations can be used. There are two kinds of mathematical models for ambiguity resolution. 
The first one is based on both pseudorange and carrier phase measurements, and the observation equations are of full 
rank. The second one is only based on carrier phase measurement, which is a rank-defect model. Though the former 
is more commonly used, the latter has its own advantage, that is, ambiguity resolution will be freed from the effects 
of pseudorange multipath. 
Galileo will be operational. One of the important differences between Galileo and current GPS is that Galileo will 

provide signals in four frequency bands. With more carrier-phase data available, frequency combinations with long 
equivalent wavelength can be formed, so Galileo will provide more opportunities for fast and reliable ambiguity 
resolution than current GPS. 
This paper tries to investigate phase only fast ambiguity resolution performance with four Galileo frequencies for 

short baseline. Cascading Ambiguity Resolution (CAR) method with selected optimal frequency combinations and 
LAMBDA method are used and compared. To validate the resolution, two tests are used and compared. The first one 
is a ratio test. The second one is lower bound success-rate test. 

The simulation test results show that, with LAMBDA method, whether with ratio test or lower bound success rate 
validation criteria, ambiguity can be fixed in several seconds, 8 seconds at most even when 1 sigma of carrier phase 
noise is 12 mm. While with CAR method, at least about half minute is required even when 1 sigma of carrier phase 
noise is 3 mm. It shows that LAMBDA method performs obviously better than CAR method. 
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1 Introduction 
 

Rapid and high-precision positioning with a Global 
Navigation Satellite System (GNSS) is feasible only when very 
precise carrier-phase observations can be used. Unfortunately, 
these observations are ambiguous by an unknown, integer 
number of cycles. These integer ambiguity parameters need to be 
resolved before carrier-phase observations can begin to serve as 
very precise pseudo-range measurements. For precise navigation, 
reliable real-time ambiguity resolution is necessary. 

Generally, there are two kinds of mathematical models for 
ambiguity resolution. The first one is based on both pseudorange 
and carrier phase measurements, and the observation equations 
are of full rank. The second one is only based on carrier phase 
measurement, which is a rank-defect model. Though the former 
is more commonly used, the latter has its own advantage, that is, 
ambiguity resolution will be freed from the effects of 
pseudorange multipath. 

For short-distance baseline, with current GPS, the efficiency 
and reliability of fast static ambiguity resolution with carrier 
phase-only measurements are not high and fewer available 
carrier-phase data is an important reason. This makes it 
impossible for safety-related applications. 

The above problems can be attributed to several reasons, such 
as poor satellite geometry, fewer satellites. Fewer available 
carrier-phase data is also an important reason. With only two 
frequency carrier-phase data available, it is impossible to form 
frequency combinations with long equivalent wavelength, which 
is very important for ambiguity resolution. 

In future, a totally new global positioning system – Galileo 
will be operational. It is a civil system, launched by Europe. One 
of the important differences between Galileo and current GPS is 
that Galileo will provide signals in four frequency bands (Luis 
Ruiz, 2005) with central frequencies at: 

E1: =1f 1575.42M Hz, E6: =2f 1278.75M Hz 

E5b: =3f 1207.14M Hz, E5a: =4f 1176.45M Hz 
With more carrier-phase data available, frequency 

combinations with long equivalent wavelength can be formed, so 
Galileo will provide more opportunities for fast and reliable 
ambiguity resolution than current GPS.  

In recent years, a lot of research works (Tiberius C. et al, 
2002; Vollath U. et al. 2002; Zhang W. et al., 2003; Werner W. 
and Winkel J., 2003; Schlotzer S. and Martin S., 2005) have 
been done to investigate ambiguity resolution performance with 
four frequencies of Galileo system. Most of them are based on 
mathematical model which takes advantage of both pseudorange 
and carrier phase measurements. Though this mathematical 
model has the advantage of full rank even with single-epoch data, 
it also has one weakness: ambiguity resolution with this model is 
easily affected by pseudorange multipath and leads to wrong 
solution. 

This paper tries to investigate carrier phase only fast static 
ambiguity resolution performance with four Galileo frequencies 
for short baselines. 

In this paper, first, optimal frequency combinations are 
selected according to appropriate success-rates based on ADOP. 
Then, CAR method and LAMBDA method are used and 



compared. To validate ambiguity resolution, two kinds of tests 
are used and compared. The first is lower bound success rate test 
based on apriori information (Teunissen, P.J.G., 1998), the other 
is ratio test based on posteriori information (Frei, E. and Beutler 
G., 1990; Euler H.J. and Schaffrin B., 1992; Landau H. and Euler 
H.J., 1992; Abidin, H.A., 1993). 

To investigate the effects of carrier-phase observation noise 
on ambiguity resolution performance, the data are simulated 
under different noise levels. Finally, test results are presented 
and analyzed. 
 
2 Combinations of Galileo frequencies 
 

Galileo system will provide four frequency bands for 
navigation (Luis Ruiz, 2005) with central frequencies at: 

E1: =1f 1575.42M Hz, E6: =2f 1278.75M Hz 

E5b: =3f 1207.14M Hz, E5a: =4f 1176.45M Hz 
The general form for a combination of the four frequencies is: 

4321 mNkNjNiNNc +++=                           (1) 

321421431432

4321

λλλλλλλλλλλλ
λλλλ

λ
mkjic +++

=          (2) 

4321 mfkfjfiff c +++=                                 (3) 

4321 LLLLLc δγβα +++=                                (4) 

Here, 1N , 2N , 3N , 4N  are ambiguities of E1, E6, E5b and 

E5a. 1λ , 2λ , 3λ , 4λ  are wavelengths of E1, E6, E5b and E5a. 

1L , 2L , 3L , and 4L  are carrier phase measurements of E1, E6, 

E5b and E5a (Unit: meter). cN , cλ , and cf  are ambiguity, 
wavelength and frequency of the combination respectively. And 

1/λλα ci= , 2/λλβ cj= , 3/λλγ ck= , 4/λλδ cm= ,  
1=+++ δλβα . 

 In above equations, i , j , k , m  are integers so that the 
integer property of the ambiguity for the combination is also 
reserved.  
 For the combination, tropospheric delay remains the same as 
that of E1, E6, E5b, or E5a. But ionospheric delay cI  and 

observation noise cσ  are different: 

1,,, IRI mkjic =                                             (5) 
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0σ  is the measurement noise level of an individual frequency 
(suppose E1, E6, E5b, or E5a have the same observation noise) . 
 Table 1 lists top ten combinations with larger wavelength to 
noise ratio. They have one common feature: i + j + k +m = 0. 
Therefore, only three independent ones can be selected from 
them. 
 Table 2 lists top five combinations with larger wavelength to 
noise ratio and uncorrelated with those in Table 1. They have one 
common feature: i + j + k +m = 1. 

Except those combinations listed in Table 1 and 2, there are 
some other combinations with long wavelength and reasonable 
wavelength to noise ratio. They are listed in Table 3. 

 

 
Table 1 Top ten combinations with larger wavelength to noise 

ratio 
 

No. i j K m cλ (m) mkjiR ,,,  mkjiA ,,, cλ / mkjiA ,,,

1 0 0 1 -1 9.76 -1.74 54.92 0.18 
2 0 1 -1 0 4.18 -1.6 24.55 0.17 
3 0 1 0 -1 2.93 -1.64 16.98 0.17 
4 1 -1 0 0 1.01 -1.23 6.84 0.15 
5 1 0 -1 0 0.81 -1.31 5.39 0.15 
6 1 0 0 -1 0.75 -1.34 4.93 0.15 
7 1 -1 -1 1 1.13 -1.17 9.92 0.11 
8 1 -1 1 -1 0.92 -1.28 8.06 0.11 
9 1 1 -1 -1 0.64 -1.38 5.61 0.11 
10 0 1 1 -2 2.25 -1.67 22.08 0.10 

 

Table 2 Top five combinations with larger wavelength to noise 
ratio uncorrelated with those in Table 1 

 

No. i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

11 -1 0 1 1 0.37 3.21 2.85 0.130 
12 -2 1 1 1 0.59 5.77 7.41 0.078 
13 -2 0 1 2 0.73 7.63 10.05 0.072 
14 -2 1 0 2 0.62 6.25 8.60 0.072 
15 -2 0 2 1 0.68 6.98 9.41 0.072 

 
Table 3 Other combinations with long wavelength and 

reasonable wavelength to noise ratios 
 

No. i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

1 0 1 -3 2 29.3 -0.77 440.27 0.066 
2 -1 4 0 -3 29.3 -13.77 626.69 0.047 
3 0 1 -2 1 7.32 -1.5 72.69 0.10 
4 1 -4 2 1 5.86 0.66 117.07 0.05 

 
3 Select optimal combinations of Galileo 
frequencies for CAR method 
 
3.1 Optimal combinations for the first step 
 

From Table 1, 2 and 3, we can find that there are two possible 
optimal combinations for the first step as listed in Table 4. For 
the second one as named Com1 in Table 4 has the longest 
wavelength and the first one as named Com0 has the largest 
wavelength to noise ratio. Besides, wavelength of Com0 is larger 
than the rest. 

 
Table 4 Possible optimal combinations for the first step 

 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

Com0 0 0 1 -1 9.76 -1.74 54.92 0.18 
Com1 0 1 -3 2 29.3 -0.77 440.27 0.066 

 
To determine which to select, their appropriate success-rates 

based on ADOP by the following formula (Teunissen, 2003) are 



calculated when using code measurement with different noises to 
fix them under different phase noise levels. 

n
S ADOP

P )1)
2

1(2( −Φ≈  

See Figure 1 for the results. 
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Figure 1 Success-rates of Com0 and Com1 for the first step 

 
The success-rate of Com0 is always bigger than that of Com1 

under same code and phase noise level. So, the optimal 
combination for the first step of CAR method should be Com0 
combination. 

 
3.2 Optimal combinations for the second step 
 

After the optimal combinations for the first step is determined, 
for the same reason as stated in the first step, we can find that 
there are three possible optimal combinations for the second step 
as listed in Table 5.  

 
Table 5 Possible optimal combinations for the second step 

 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

Com1 0 1 -3 2 29.3 -0.77 440.27 0.066 
Com2 0 1 -1 0 4.18 -1.60 24.55 0.17 
Com3 0 1 -2 1 7.32 -1.50 72.69 0.10 

 
To determine which to select, their success-rates are 

calculated when using unambiguous Com0 measurement to fix 
them under different phase noise levels. See Figure 2 for the 
results. 
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Figure 2 Success-rates of Com1, Com2 and Com3 for the 

second step 
 

We can see that, the success-rate of Com2 is always bigger 
than those of Com1 and Com3 under same phase noise level. So, 
the optimal combination for the second step of CAR method 
should be Com2 combination. 

 

3.3 Optimal combinations for the third step 
 

In research papers about CAR method, generally, the 
combination fixed in the second step is used as unambiguous 
measurement for the third step. But this is not optimal for the 
combination fixed in the second step is always has big noise. 

There are a lot of combinations which are correlated with 
Com0 and Com2. After Com0 and Com2 are fixed, ambiguities 
of these combinations can be calculated from their linear 
relationships with Com0 and Com2. Among them, the 
combination with minimum noise is listed in Table 6, which is 
the transferring combination from the second step to the third 
and named Trans0. 

 
Table 6 Transferring Combination from the second step to 

the third 
 

Name i j K m cλ (m) mkjiR ,,,  mkjiA ,,,

Trans0 0 5 -1 -4 0.62 -1.64 16.7 
 
For the same reason as for first and second step, from Table 1, 

2 and 3, we can see that there are three possible optimal 
combinations as named Com4, Com5 and Com6 in Table 7. 

 
Table 7 Possible optimal combinations for the third step 

 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

Com4 1 -1 0 0 1.01 -1.23 6.84 0.15 
Com5 1 -4 2 1 5.86 0.66 117.07 0.05 
Com6 -1 4 0 -3 29.3 -13.77 626.69 0.047 

 
To determine which to select, their success-rates are 

calculated when using unambiguous Trans0 measurement to fix 
them under different phase noise levels. See Figure 3 for the 
results. 
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Figure 3 Success-rates of Com4, Com5 and Com6 for the 

third step 
 

The success-rate of Com4 is always bigger than those of 
Com5 and Com6 under same phase noise level. So, the optimal 
combination for the third step of CAR method should be Com4 
combination. 

 
3.4 Optimal combinations for the fourth step 
 

From third step to the fourth step, a transferring combination 
is also found as named Trans1 in Table 8, which has the 
minimum noise among combinations correlated to Com0, Com2 
and Com4. 

 
 



Table 8 Transferring Combination from the third step to the 
fourth 

 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,

Trans1 5 0 -2 -3 0.155 -1.32 4.64 
 
For the same reason as for the above steps, from Table 1, 2 

and 3, we can see that there are four possible optimal 
combinations as named Com7, Com8, and Com9 in Table 9. In 
addition to these three, there is another choice, E5a, which is also 
listed in Table 9. We can see that E5a has the largest wavelength 
to noise ratio. 

 
Table 9 Possible optimal combinations for the fourth step 

 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,  cλ / mkjiA ,,,

Com7 -1 0 1 1 0.37 3.21 2.85 0.130 
Com8 -2 1 1 1 0.59 5.77 7.41 0.078 
Com9 -2 0 1 2 0.73 7.63 10.05 0.072 
E5a 0 0 0 1 0.255 1.79 1 0.255 

 
To determine which to select, their success-rates are 

calculated when using unambiguous Trans1 measurement to fix 
them under different phase noise levels. See Figure 4 for the 
results. 
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Figure 4 Success-rates of Com7, Com8, Com9 and E5a for 

the fourth step 
 

The success-rate of E5a is always bigger than those of other 
choices under same phase noise level. So, the optimal choice for 
the fourth step of CAR method should be E5a. 

 
Table 10 Optimal Combinations 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,

Com0 0 0 1 -1 9.76 -1.74 54.92
Com2 0 1 -1 0 4.18 -1.6 24.55
Com4 1 -1 0 0 1.01 -1.23 6.84 
E5a 0 0 0 1 0.25 1.79 1 

 

Table 11 Two transferring Combinations for the third and 
fourth steps 

Name i j k m cλ (m) mkjiR ,,,  mkjiA ,,,

Trans0 0 5 -1 -4 0.62 -1.64 16.7 
Trans1 5 0 -2 -3 0.155 -1.32 4.64 

 

Therefore, the optimal combinations for CAR method 
according to lower bound success-rate based on bootstrapping 
are ones listed in Table 10. And two transferring combinations 
for the third and fourth steps are listed in Table 11. 
 
4. CAR method and LAMBDA method 
 
4.1 CAR method 
 

In the past research work, when using CAR method, for the 
third and fourth steps, fixed ambiguities of previous step is used 
directly as unambiguous measurements. But in this paper, the 
transferring combinations listed in Table 11 are used to improve 
the performance for these two combinations have minimum 
noises among all combinations linearly correlated with 
combinations fixed in previous step. 

Mathematical model of geometry-based CAR method is 
composed of the following four steps: 
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Where, 1ComN , 2ComN , 3ComN , 1TransN , 2TransN  

and 4ComN  are double-differenced ambiguity vectors of the 

combinations; 1ComL , 2ComL , 3ComL , 1TransL , 2TransL  

and 4ComL  are double-differenced measurement vectors of the 

combinations, 1B , 2B , 3B , 4B , 1TransB and 2TransB are 
corresponding coefficient matrix of ambiguity vectors. 

Weight matrix is applied according to observation noises. 
 

4.2 LAMBDA method 
 

Mathematical model of LAMBDA method is: 
LBNAX =+                                  (11) 

Where, X is real-valued parameter vector which includes 
coordinate parameters; N is double-differenced ambiguity 
vector of E1, E6, E5b and E5a; L is difference vector formed by 
subtracting computed values from the double-differenced carrier 
phase observations of E1, E6, E5b and E5a. 

The weight matrix of observations is P  and same weight is 
applied to all carrier phase observations. 

 
5 Validation criteria used for ambiguity 
resolution 
 

The ambiguity solution should only be used when one can 
have enough confidence in it. Therefore, it is important to 
validate the ambiguity solution. Currently, there are two kinds of 
validation methods. The first one is success rate, which is based 
on apriori information of measurement models and provides the 
expected probability of the ambiguity solution. Unfortunately, 
instead of exact success rate, only approximations can be 
obtained. One lower bound approximation is provided by the 
following formula (Teunissen P.J.G. and Odijk D., 1997; 
Teunissen P.J.G., 1998 ;S. Verhagen, 2005): 



∏
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Where, Ii|σ  is the standard deviation of the i-th ambiguity 

obtained through a previous I = 1, …, (i – 1) ambiguities, and 
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The other kind of validation method is based on posteriori 
information, where practical measurements are needed. A lot of 
discrimination tests can be included in this kind. Though without 
sound theoretical foundation, one ratio test is often used to 
discriminate the best and the second best ambiguity solution as 
given by the following formula (Euler, et al. 1991): 

k
R
RS ≥
min

                                       (13) 

Where,  
)ˆ()ˆ( ˆmin aaQaaR a

T (( −−=  

)ˆ()ˆ( ˆ Sa
T

SS aaQaaR (( −−=  
and k is the empirically chosen critical value. 

To compare these two kinds of validation methods, both 
validation tests by formula (12) and (13) are used. For the former, 
the critical value is set to 99.9%. As regard to the latter, for 
LAMBDA method, k  is set to 2; for CAR method, because of 
severe singularity, k becomes very unstable. In this paper, it is 
set to 4. 

 
6 Data simulation 
 

To investigate ambiguity resolution performance of Galileo, 
Galileo measurements are simulated on two stations A (-
2420466.778, 5388173.100, 2398086.812) and B (-2420906.778, 
5387712.100, 2398673.812). Both stations are around Hong 
Kong and the distance of formed baseline AB is about 860m. 

The simulated multipath and noise error levels of carrier 
phase measurements are listed in Tables 12. Tropospheric and 
ionospheric delays are simulated with Hopfield and Klobuchar 
models. 

 
Table 12 Carrier phase multipath + noise level  

Carrier phase observation noise and 
multipath error 

1 sigma 
(mm) 

Level 1 3 
Level 2 6 
Level 3 12 

 
Twenty-four hour Galileo measurement data are simulated 

with epoch interval of one second. 
 

7 Test results 
 

The simulated data are processed every 20 seconds with 
LAMBDA and CAR methods with two validation tests: success 
rate test and ratio test. 

The following two figures show LAMBDA method results 
under different carrier phase noises. And there is no misfixed 
case. 

Figure 5 is the result of LAMBDA method with ratio 
validation test and Figure 6 is the result of LAMBDA method 
with lower bound success rate validation test. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From these two figures, we can see that for LAMBDA method 
with both validation criteria, ambiguity can be fixed in several 
seconds, at most 8 seconds even when carrier phase noise is as 
big as 12mm. The results also show that with the increase of 
carrier phase noise, the time required also increases. 
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Figure 6 LAMBDA method with success rate test 

 
The following two figures show CAR method results under 

different carrier phase noises. 
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Figure 5 LAMBDA method with ratio test 
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Figure 7 Average time required with CAR method 
and success rate test 
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Figure 8 Average time required with CAR method 
and ratio test 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 is the average time required to fix ambiguity with 

lower bound success rate validation test and there is no misfixed 
case. Figure 8 is the average time required to fix ambiguity with 
ratio validation test and Figure 9 shows the misfixed percent 
under different carrier phase noises. 

From Figure 7 and 8, we can see that, the average time 
required to fix ambiguity is much longer that of LAMBDA 
method, at least half one minute with success rate test even when 
1 sigma of carrier phase noise is 3mm. 

And due to severe singularity, ratio test becomes unreliable 
for CAR method. There is misfixed cases with ratio values 
greater than 14. 

So, LAMBDA method performs obviously better than CAR 
method. 

 
8 Conclusions 
 

In this paper, ambiguity resolution performances with four 
Galileo frequencies are investigated under different carrier phase 
noise levels. LAMBDA and CAR methods are used and 
compared. Two ambiguity validation methods, F ratio test 
(critical value = 1.2) and lower bound success rate (>99.9%), are 
used and compared. 

From the results, the following conclusions can be drawn 
about carrier phase-only fast static ambiguity resolution 
performance: 

 When using LAMBDA method, whether with ratio test 
or lower bound success rate validation criteria, 
ambiguity can be fixed in several seconds, at most 8 
seconds even when carrier phase noise is as big as 12mm. 

 With the increase of carrier phase noise, the time 
required also increases. 

 Comparing the results with these two methods, it shows 
that LAMBDA method performs obviously better than 
CAR method. 
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