• Title/Summary/Keyword: GPS phase measurement

Search Result 83, Processing Time 0.035 seconds

Multipath detection in carrier phase differential GPS

  • Seo, Jae-Won;Lee, Hyung-Keun;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1239-1243
    • /
    • 2005
  • A multipath mitigation method using the fault detection and isolation technique is proposed for the CDGPS. The base station is assumed to be immune to the effect of the multipath. With this reasonable assumption, the effect of multipath in moving station is mitigated. For that, the double difference measurement is produced, and then another additional difference between code pseudorange and acclumulated carrier phase is calculated. The test statistic is constituted with those differences. The hypothesis testing is applied to that test statistic. The proposed test statistic makes use of the effect of multipath in code pseudoranges and it does not use time differences. Therefore the detection ability for multipath is improved in most environments. However, the increased number of differences makes the measurement noises larger. The performance of the method is compared with that of the conventional parity space method with code pseudorange.

  • PDF

Fault Detection Method of GNSS Carrier Phase Measurement using Vehicle Velocity and Antenna Baseline Distance (이동체의 속도와 안테나 기저선을 활용한 반송파 측정값의 고장검출)

  • Park, Jae-Ik;Lee, Eun-Sung;Heo, Moon-Beom;Nam, Gi-Wook;Sim, Eun-Sup
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.640-647
    • /
    • 2010
  • Many methods have been proposed to detect faults of carrier phase measurements, but there are no distinguished methods for land transportation systems. in this paper, the baseline constraints are used to detect faults in GPS carrier phase measurements with vehicle dynamic information. The faults include the multipath on GPS carrier measurements. Multiple antenna groups are used for this research. In the measurement domain the fault detection has been accomplished so that the implementation is easier than other methods.

Parameter Estimation for Multipath Error in GPS Dual Frequency Carrier Phase Measurements Using Unscented Kalman Filters

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tea-Sam;Jee, Gyu-In;Kim, Jeong-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.388-396
    • /
    • 2007
  • This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.

Precise attitude determination using GPS carrier phase measurements (GPS 반송파 위상을 이용한 정밀 자세 측정)

  • Park, Chan-Sik;Lee, Jang-Gyu;Jee, Gyu-In;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.602-612
    • /
    • 1997
  • With GPS carrier phase measurements from more than two antenna which attached to the vehicle, precise attitude can be easily obtained if the integer ambiguity included in carrier phase measurement is resolved. Recently some special products which use dual frequencies or has one receiver engine with multiple antenna are announced. But there are still strong requirements for the conventional single frequency off-the-shelf receiver. To meet these requirements, an efficient integer ambiguity resolution technique is indispensable. In this paper, a new technique to resolve integer imbiguity with single frequency receivers is proposed. The proposed method utilize the known baseline length as a constraint of independent elements of integer ambiguities. With this constraints, the size of search volume can be greatly reduced. Thus the true integer ambiguity can be easily determined with less computational burden and number of measurements. The proposed method is applied to real data to show its effectiveness.

  • PDF

Improvement of Success Rate on LEO Satellite Attitude Determination Using GPS Carrier Phase Measurements (GPS를 이용한 저궤도 위성 자세 결정의 미지정수 결정 성공확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In;Jun, Hyang-Sig;Joo, Jung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.45-50
    • /
    • 2005
  • To determine precise position GPS carrier phase measurements are used. In addition, the multi-antenna system consisting of 2 or more GPS antennas can make attitude determination effectively. When GPS carrier phase measurements are used the integer ambiguity must be fixed. The success rate is used to validate the integer ambiguity. For LEO satellite attitude determination the double difference carrier phase measurements are used, the success rate is calculated using the covariance matrix and the measurement matrix. The constraint that LEO satellite position vector and attitude vector is orthogonal is suggested for improving the success rate. The LEO satellite orbit model is KITSAT3. The results of the simulation are shown and analyzed.

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Implementation of Synchronized Phasor Measurement Unit Using GPS (GPS를 이용한 동기페이저측정장치의 EMTP모델 구현)

  • Cho, Ki-Seon;Heo, Mun-Jun;Choi, Myung-Seok;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1262-1266
    • /
    • 1999
  • More precise operation and control is required to ensure the stability and security of modern large power systems that is a complicated and widely dispersed structure. To ensure the precise operation and control of modern power system, most of all, precise monitoring and measurement of the various state values of power system is required. This paper discusses phasor measurement unit using synchronization signals from the GPS satellite system- Synchronized Phasor Measurement Unit. Considering the power system operation state, the transmitting data format over modems is defined. To provide all available information, PMU process the measurements to generate three phase symmetrical component. This paper proposes the transmitted data format and implements the PMU model using EMTP/Models. The validity of proposed model is confirmed through several contingency on the simple power system.

  • PDF

Simplified Noise Modeling of GPS Measurements for a Fast and Reliable Cycle Ambiguity Resolution

  • Park, Byung-Woon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.535-540
    • /
    • 2006
  • The relationship between the observable noise model and the satellite elevation angle can be modeled quite well by an exponential function.[Jin, 1996] Noise size and dependence on the elevation angle are, however, different for each observation and receiver type. Therefore, the coefficient determination of this model is an issue, and various methods including PR-CP, single difference, and time difference have been suggested. The limitations of them are difficulty to model the carrier phase noise and to eliminate bias. To overcome these disadvantages for using Jin's model, we suggest zero baseline double difference (DD) and noise sorting algorithm. Data DD technique in zero baseline is useful to eliminate all the troublesome GPS biases, and the remaining error is the sum of GPS measurement noises from two satellites. These DD residuals for hours should be sorted by the combination of satellite elevation angles, and then variance value of the residual for each combination can be estimated. Using these values, we construct an over-determined linear equation whose solution is a set of noise variance for each satellite elevation angle. With 24hr Trimble 4000ssi data, we easily worked out the coefficients of the noise model not only for pseudorange but also for carrier phase. We estimated the standard deviation of the measurement DD using our model, and plotted 1 and 3 sigma lines for every epoch to verify the representation of the residual error. 63.3% of pseudorange residual and 65.9% of phase error did not exceed the 1 sigma lines. Additionally, 99.2% and 99.5% of them lied within 3sigma line. These figures prove that the Gaussian property of measurement noise, and that the suggested model by our algorithm corresponds to the observable noise information.

  • PDF

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Naknma, Yoshiyasu;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The Kinematic GPS is well known to provide a quite good accuracy of positioning within an level. Although kinematic GPS assures high precision measurement on the basis of an appreciable distance between a reference station and an observational point, it has measurable distance restriction within 20 km from a reference station on land. Therefore, it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction In this paper, the velocity integration method to get the precise velocity information of a ship is explained. The experimental results of Zig-zag maneuver and Williamson turn as the ship's maneuvering test, and other experimental results of ship's movement during leaving and entering the port with low speed were shown. From the experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.