• Title/Summary/Keyword: GPS deformation monitoring

Search Result 24, Processing Time 0.019 seconds

The Data Processing Method for Small Samples and Multi-variates Series in GPS Deformation Monitoring

  • Guo-Lin, Liu;Wen-Hua, Zheng;Xin-Zhou, Wang;Lian-Peng, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.185-189
    • /
    • 2006
  • Time series analysis is a frequently effective method of constructing model and prediction in data processing of deformation monitoring. The monitoring data sample must to be as more as possible and time intervals are equal roughly so as to construct time series model accurately and achieve reliable prediction. But in the project practice of GPS deformation monitoring, the monitoring data sample can't be obtained too much and time intervals are not equal because of being restricted by all kinds of factors, and it contains many variates in the deformation model moreover. It is very important to study the data processing method for small samples and multi-variates time series in GPS deformation monitoring. A new method of establishing small samples and multi-variates deformation model and prediction model are put forward so as to resolve contradiction of small samples and multi-variates encountered in constructing deformation model and improve formerly data processing method of deformation monitoring. Based on the system theory, a deformation body is regarded as a whole organism; a time-dependence linear system model and a time-dependence bilinear system model are established. The dynamic parameters estimation is derived by means of prediction fit and least information distribution criteria. The final example demonstrates the validity and practice of this method.

  • PDF

The Datum Design Study of High Precision GPS Height Monitoring Network---- with the Example of Monitoring Land Subsidence & Ground Fissure in Xi'an City

  • Qin, Zhang;Li, Wang;Zhong, Liu;Guan-wen, Huang;Xiao-guang, Ding
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.229-234
    • /
    • 2006
  • There are still some key problems having to be solved in theory and technique applications when GPS is used to monitor the vertical deformation of ground with high precision. Utilizing the GPS technology to monitor the deformation of the land subsidence and ground fissure in Xi'an, this paper puts forward advice that the datum frame of GPS network has significant influence on the precision and accuracy of the vertical deformation results by some research. The co-authors make some theoretical study of the datum error and practice by establishing the datum error models, especially the influence of scale and azimuth datum errors on GPS monitoring network. Then the datum frame design methods and arithmetic of GPS monitoring network are presented and have taken a good effect.

  • PDF

Deformation Monitoring of a Structure Using Kinematic GPS Surveying Technology (Kinematic GPS 측량기법에 의한 구조물의 변형 모니터링)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.27-40
    • /
    • 1998
  • This paper addresses the suitability of GPS positioning technology to monitoring deformation and movement of structures. The first part of the study is an empirical quantitative study of the repeatability of GPS observations and the second part is a performance evaluation of kinematic GPS, which requires only a few minutes per a point, for monitoring deformation of an engineering structure. On the test network for monitoring of a earth am, four observations have been conducted repeatedly on different seasons and water levels. The reference network was observed in static mode, and monitoring points were observed respectively in rapid-static mode as well as in kinematic mode in each epoch and then the results were compared with those obtained by conventional surveying techniques. The repeatability of baseline vectors to better than average 7 mm in three dimensions was achieved in base line observations between reference points and also the unclosure of reference networks showed the range of 4 ppm to 27 ppm. Compared with conventional surveying techniques, the kinematic approach showed the differences of 3∼4 m in slope distances which were observed from reference points to monitoring points, and showed the differences of 4∼8 m in height. It was ascertained that the kinematic GPS technology provides an efficient alternative to deformation monitoring by conventional means which are capable of detecting movements in the order of 5 mm.

  • PDF

Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • Effective monitoring, reliable data analysis, and rational data interpretations are challenges for engineers who are specialized in bridge health monitoring. This paper demonstrates how to use the Global Positioning System (GPS) and accelerometer data to accurately extract static and quasi-static displacements of the bridge induced by ambient effects. To eliminate the disadvantages of the two separate units, based on the characteristics of the bias terms derived from the GPS and accelerometer respectively, a wavelet based multi-step filtering method by combining the merits of the continuous wavelet transform (CWT) with the discrete stationary wavelet transform (SWT) is proposed so as to address the GPS deformation monitoring application more efficiently. The field measurements are carried out on an existing suspension bridge under the normal operation without any traffic interference. Experimental results showed that the frequencies and absolute displacements of the bridge can be accurate extracted by the proposed method. The integration of GPS and accelerometer can be used as a reliable tool to characterize the dynamic behavior of large structures such as suspension bridges undergoing environmental loads.

Direct Calculation For Large Deformation

  • Wang, Xin-Zhou;Lei, Qiu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.97-100
    • /
    • 2006
  • The paper proposes a condition that should be satisfied when using the combination with different carrier phase observations to get the high precision deformation value. If the condition is satisfied, on the basis of DC algorithm, when the deformation is relatively large (0.7m),high precision deformation value can be obtained.

  • PDF

A Study on the Static Deformation Monitoring of the Offshore Structures by GPS Survey (GPS 측량에 의한 해안구조물의 정적변위측정에 관한 연구)

  • 이창경;김창우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.369-378
    • /
    • 2000
  • The objective of this study is to measures deformation of the structures for stability checks by GPS survey. In this study, 2 points on south side dike of Keum River were measured by 4 sets of GPS(SR9500, Leica) every 4 months for a year, and 3-dimensional displacements of the points were acquired. In order to seek more reliable deformation measurement methods for the offshore structure by GPS, the accuracy of GPS survey with various control points configuration and checking system for detecting unrealistic measurements are also discussed.

  • PDF

Structure Deformation Check with GPS and IMU (GPS와 IMU에 의한 구조물 변형 검색)

  • 김진수;박운용;장상규;안상준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.113-117
    • /
    • 2004
  • Such social structures as bridges, buildings, dams and towers have been transformed by their own load or fundamental ground. They have been behaved by other external causes. These regular or irregular behaviors threaten to do their users safety. Therefore, to monitor the load of the structures or reaction shown by them could help to verify their behaviors. RTK GPS allows the use of a static base station and remote rover unit to allow for data collection within several seconds and in real time. It is useful for monitoring the behaviors of massive structures like bridges. In this Study, Among GPS methods, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when measured the behavior of main tower of a suspension bridge by using RTK GPS. Comparing a deviation between observation values, X axis was 1mm, Y axis was 1mm and Z axis 2.2mm. It turned out that it was possible to monitor and measure structures by RTK GPS.

  • PDF

Monitoring about Crustal Deformation by Earthquake in the East of Japan (일본 동부지역 지진에 따른 지각변동 모니터링)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2390-2395
    • /
    • 2012
  • Monitoring of crustal movement by earthquake is an important line of study in geophysics and geodesy. In this Study, before and after the earthquake data about nine IGS permanent stations were processed by Precise Positioning System to analysis the influence area about Japanese earthquake in March 11 at 2:46pm. As the result of crustal deformation monitoring, the quantitative earthquake displacement and change of crustal movement was presented. Crustal movement monitoring using continuous GPS data processing is necessary for crustal research and predicting earthquake because crustal movement assumed a new aspect before and after the earthquake in Japan.

Displacement Analysis of Dam Deformation Monitoring with GPS (GPS에 의한 댐 변형 모니터링의 변위 분석)

  • 장상규;김진수;신상철;박운용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.237-244
    • /
    • 2001
  • On this study, a 50-years-old earth dam was measured by the static method of GPS for deformation monitoring. The reference network was measured by the vector between points in twice times and the monitored points were observed in four times at test field, i.e. an embankment which was restored by mortar, In addition, gross errors in the measurement were estimated and eliminated by data snooping method and random errors were adjusted by least square method. Finally, the amount of displacement was estimated from variance-covariance matrix. Also, precision of points were showed by the confidence ellipse(95%), and the amount of displacement was figured.

  • PDF

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.