• Title/Summary/Keyword: GPS 위치기반

Search Result 878, Processing Time 0.023 seconds

Design of Embedded Security Controller Based on Client Authentication Utilizing User Movement Information (사용자의 이동정보를 활용한 클라이언트 인증 기반의 임베디드 보안 컨트롤러 설계)

  • Hong, Suk-Won
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • A smart key has been used in a variety of embedded environments and there also have been attacks from a remote place by amplifying signals at a location of a user. Existing studies on defence techniques suggest multiple sensors and hash functions to improve authentication speed; these, however, increase the electricity usage and the probability of type 1 error. For these reasons, I suggest an embedded security controller based on client authentication and user movement information improving the authentication method between a controller and a host device. I applied encryption algorithm to the suggested model for communication using an Arduino board, GPS, and Bluetooth and performed authentication through path analysis utilizing user movement information for the authentication. I found that the change in usability was nonsignificant when performing actions using the suggested model by evaluating the time to encode and decode. The embedded security controller in the model can be applied to the system of a remote controller for a two-wheeled vehicle or a mobile and stationary host device; in the process of studying, I found that encryption and decryption could take less then 100ms. The later study may deal with protocols to speed up the data communication including encryption and decryption and the path data management.

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

Recognition of Indoor and Outdoor Exercising Activities using Smartphone Sensors and Machine Learning (스마트폰 센서와 기계학습을 이용한 실내외 운동 활동의 인식)

  • Kim, Jaekyung;Ju, YeonHo
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.235-242
    • /
    • 2021
  • Recently, many human activity recognition(HAR) researches using smartphone sensor data have been studied. HAR can be utilized in various fields, such as life pattern analysis, exercise measurement, and dangerous situation detection. However researches have been focused on recognition of basic human behaviors or efficient battery use. In this paper, exercising activities performed indoors and outdoors were defined and recognized. Data collection and pre-processing is performed to recognize the defined activities by SVM, random forest and gradient boosting model. In addition, the recognition result is determined based on voting class approach for accuracy and stable performance. As a result, the proposed activities were recognized with high accuracy and in particular, similar types of indoor and outdoor exercising activities were correctly classified.

A Prediction and Distribution of Wetland Based on an E-GIS (E-GIS 기반의 습지분포 및 규모예측)

  • Jang, Yong Gu;Kim, Sang Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1011-1017
    • /
    • 2006
  • It is so sensitive that the wetland ecosystem very weak in artificial interference and environment change. wetlands are a transitional zone between aquatic and terrestrial ecosystems. This natural property is important to people and life. It is necessary to preservation and protection of the wetland with a countermeasure. we really need to Environment-GIS (E-GIS) and digital map which is included correct position, attribute data and range of the wetland. In this study, we take priority of making a database of wetland management. Moreover, we standardize a digital map production of wetland in our research and we improve accuracy of control survey using GPS surveying. The main purpose of this study is to suggest a pre-estimated wetland that have not yet been discovered. by analysing terrain, geological feature, a geographical distribution of plants and animals using GIS.

Analysis and Improvement of Utilization Status through GPS Data Analysis of Shared Electric Kickboard in Wirye New Town (위례 신도시 공유 전동 킥보드 GPS데이터 분석을 통한 이용실태 분석 및 개선사항)

  • Hong, Seok-Do;You, Yen-Yoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.471-476
    • /
    • 2021
  • Personal mobility (PM) is a new concept of transportation used by one or two people using electricity. Personal transportation aims to move quickly and conveniently over an ambiguous distance that is too close to the destination and too far to walk. In particular, as electric kickboard sharing services have become more common in recent years, they are receiving great popularity from citizens. However, it is necessary to come up with an alternative solution as it is acting as a risk not only to users but also to pedestrians and road drivers. Therefore, in order to present measures to establish and improve a safe personal mobility utilization environment, this research was conducted as follows. First, based on GPS data from shared electric kickboards, the usage status in everyday life was examined and analyzed in detail. Second, it is convenient to rent and return shared electric kickboards directly to applications regardless of time, and it is highly accessible to rent them from their location and reach their destination. Based on these findings, this study suggests that careful access to rental and return could have a more positive effect on users and pedestrians by installing a cradle in a place where there is more use than disorderly device placement and expansion.

GIS and Geographically Weighted Regression in the Survey Research of Small Areas (지역 단위 조사연구와 공간정보의 활용 : 지리정보시스템과 지리적 가중 회귀분석을 중심으로)

  • Jo, Dong-Gi
    • Survey Research
    • /
    • v.10 no.3
    • /
    • pp.1-19
    • /
    • 2009
  • This study investigates the utilities of spatial analysis in the context of survey research using Geographical Information System(GIS) and Geographically Weighted Regression (GWR) which take account of spatial heterogeneity. Many social phenomena involve spatial dimension, and with the development of GIS, GPS receiver, and online location-based services, spatial information can be collected and utilized more easily, and thus application of spatial analysis in the survey research is getting easier. The traditional OLS regression models which assume independence of observations and homoscedasticity of errors cannot handle spatial dependence problem. GWR is a spatial analysis technique which utilizes spatial information as well as attribute information, and estimated using geographically weighted function under the assumption that spatially close cases are more related than distant cases. Residential survey data from a Primary Autonomous District are used to estimate a model of public service satisfaction. The findings show that GWR handles the problem of spatial auto-correlation and increases goodness-of-fit of model. Visualization of spatial variance of effects of the independent variables using GIS allows us to investigate effects and relationships of those variables more closely and extensively. Furthermore, GIS and GWR analyses provide us a more effective way of identifying locations where the effect of variable is exceptionally low or high, and thus finding policy implications for social development.

  • PDF

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.

Performance Analysis of Multi-GNSS Positioning Accuracy with Code Pseudorange of Dual-Frequency Android Smartphone in Maritime Environment (안드로이드 스마트폰의 이중 주파수 GNSS 의사거리 기반 해상 측위정확도 성능 분석)

  • Seo, Kiyeol;Kim, Youngki;Jeon, Tae-Hyeong;Son, Pyo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1588-1595
    • /
    • 2021
  • Android-based smartphones receive the global navigation satellite system (GNSS) signals to determine their location and provide the GNSS raw measurement to users. The available GNSS signals on the current Android devices are GPS, GLONASS, Galileo, BeiDou, QZSS. This research has analyzed the performance of multi-GNSS position accuracy based on the pseudorange of the smartphone for maritime users. Smartphones capable of receiving dual-frequency are installed on a ship, and multi-GNSS raw information in maritime environment was measured to present the results of comparing the GNSS pseudorange-based dual-frequency positioning performance for each smarphone. Furthermore, we analyzed whether the results of the positioning performance can meet the HEA requirement of IMO for maritime navigation users. As the results of maritime experiment, it was confirmed that in the case of the smartphones supporting the dual-frequency, the position accuracy within 6 meters (95%) could be obtained, and the HEA position accuracy performance within 10 meters (95%) required by IMO could be achieved.

Cluster-based Geocasting Protocol in Ad-hoc Networks (애드 혹 네트워크에서 클러스터 기반 지오캐스팅 프로토콜)

  • Lee Jung-Hwan;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.407-416
    • /
    • 2005
  • This paper suggests a new geocasting protocol which is used to transfer the geographic packets to the specific region in MANET. Geocasting protocol is basically different from the conventional multicasting protocol that needs group addition and maintenance. A geocasting protocol using the mobile node's position information is the new area of multicasting protocols. The existing geocasting protocols have the following problems; it may be impossible to transfer data to some mobile hosts even if there are alternate routes and they have low adaptability and efficiency when the number of mobile hosts increases. The proposed CBG (Cluster-Based Geocasting) uses the proactive routing strategy and clustering technique with mobile host's location information. The CBG achieves high successful data transmission ratio and low data delivery cost to mobile hosts at specific region.

Analysis of Sky-View-Factor based Dilution of Precision for Evaluation of GNSS Performance in Land Road Environment (육상교통환경 위성항법 성능 예측을 위한 Sky-View-Factor 기반 Dilution of Precision 분석)

  • Hong, Woon-Ki;Choi, Kwang-Sik;Lee, Eun-Sung;Im, Sung-Hyuck;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.944-951
    • /
    • 2012
  • The conventional indexes for describing the GNSS positioning performance such as satellite visibility, dilution of precision (DOP) and signal to noise ratio is very useful in open sky, however, they are not useful in the land road environment. In this paper new index is suggested for describing the GNSS positioning performance for the road environment. The new index is called Sky View based DOP (SVDOP). SVDOP is derived referring the Sky-View-Factor (SVF). The usefulness is analyzed by comparing the SVDOP and SVF in land road environment after the singularity points are selected and SVDOP is calculated.