• Title/Summary/Keyword: GPS/INS System

Search Result 265, Processing Time 0.027 seconds

Operational Concept and Procedure for Land Navigation of Distributed Missile System (분산유도무기체계의 지상항법 운용 개념 및 절차 연구)

  • Ryu, Moo-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2008
  • A distributed missile system is composed of command control center, radar and launcher which exchange information each other to use wire or wireless network. The distributed missile system is required mobility for operational convenience and survivability. Also missile system requests land navigation system to provide relatively accurate attitude. For reason of these requirements, each subsystem needs land navigation which provides information of position and attitude. This paper represents operational concept for land navigation to consider operational environment and concrete operational procedure to apply the operational concept. In state that there is no operation for land navigation of distributed missile system internally so for, this paper could be helped to establish operational concept and procedure of this kind of system.

EVALUATION OF THE RADIOMETRIC AND SPECTRAL CHARACTERISTICS OF THE CAISS

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high quality spectral and high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems shall be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS shall be calibrated and validated with the calibration equipments such as the integrated sphere and spectral lamps. To improve data quality and availability, it is the most important to understand the mechanism of hyperspectral imaging system and the radiometric and spectral characteristics. This paper presents the major characteristics of camera system on the CAISS and summarizes the results of radiometric and spectral experiment during preliminary system verification.

  • PDF

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Determination of 3D Object Coordinates from Overlapping Omni-directional Images Acquired by a Mobile Mapping System (모바일매핑시스템으로 취득한 중첩 전방위 영상으로부터 3차원 객체좌표의 결정)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.305-315
    • /
    • 2010
  • This research aims to develop a method to determine the 3D coordinates of an object point from overlapping omni-directional images acquired by a ground mobile mapping system and assess their accuracies. In the proposed method, we first define an individual coordinate system on each sensor and the object space and determine the geometric relationships between the systems. Based on these systems and their relationships, we derive a straight line of the corresponding object point candidates for a point of an omni-directional image, and determine the 3D coordinates of the object point by intersecting a pair of straight lines derived from a pair of matched points. We have compared the object coordinates determined through the proposed method with those measured by GPS and a total station for the accuracy assessment and analysis. According to the experimental results, with the appropriate length of baseline and mutual positions between cameras and objects, we can determine the relative coordinates of the object point with the accuracy of several centimeters. The accuracy of the absolute coordinates is ranged from several centimeters to 1 m due to systematic errors. In the future, we plan to improve the accuracy of absolute coordinates by determining more precisely the relationship between the camera and GPS/INS coordinates and performing the calibration of the omni-directional camera

Avoidance Algorithm and Extended Kalman Filter Design for Autonomous Navigation with GPS & INS Sensor System Fusion (GPS와 INS의 센서융합을 이용한 확장형 칼만필터 설계 및 자율항법용 회피알고리즘 개발)

  • Yu, Hwan-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.146-153
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

  • PDF

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

Calibration of Laser scanning Mobile Mapping System using Lynx Mobile Mapper (Lynx Mobile Mapper를 이용한 레이저스캐너 기반 차량 MMS의 캘리브레이션)

  • Jeong, Tae-Jun;Yun, Hong-Sic;Hwang, Jin-Sang;Kim, Yong-Hyun;Lee, Ha-Jun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.207-208
    • /
    • 2010
  • In this paper, we carried out calibration of laser scanning MMS(Mobile Mapping System) using Lynx Mobile Mapper, a new MMS developed at Optech Incorporated. Laser scanning MMS could be defined as an integration of several subsystems. Subsystems are composed of laser scanner, gps receiver and antenna, INS(Inertial Navigation System), DMI(Distance Measurement Instrument). These are obtained 3D spatial information by direct-georeferencing technology. To obtain 3D spatial information, calibration of laser scanning MMS is required prior to operation system, it is similar to airborme lidar system. 145 checkpoints were used to accuracy estimation. The accuracy results are about 5cm(RMSE) for calibration in all directions(east, north, ellipsoidal height).

  • PDF

Vision-based Navigation using Semantically Segmented Aerial Images (의미론적 분할된 항공 사진을 활용한 영상 기반 항법)

  • Hong, Kyungwoo;Kim, Sungjoong;Park, Junwoo;Bang, Hyochoong;Heo, Junhoe;Kim, Jin-Won;Pak, Chang-Ho;Seo, Songwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.783-789
    • /
    • 2020
  • This paper proposes a new method for vision-based navigation using semantically segmented aerial images. Vision-based navigation can reinforce the vulnerability of the GPS/INS integrated navigation system. However, due to the visual and temporal difference between the aerial image and the database image, the existing image matching algorithms have difficulties being applied to aerial navigation problems. For this reason, this paper proposes a suitable matching method for the flight composed of navigational feature extraction through semantic segmentation followed by template matching. The proposed method shows excellent performance in simulation and even flight situations.

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

Design of a Guidance Kit for Air-to-Surface Bomb (공대지 폭탄용 유도키트 설계)

  • Lee, Dae-Yeol;Lee, In-Won;Joe, Jae-Ho;Kim, Yong-Bin;Ju, Hyun-Jun;Jung, Na-Hyeon;Park, Jun-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • A guidance kit transforming a general purpose bomb into an air-to-surface gliding bomb was developed. This guidance kit consists of a flight kit and a tail kit. Flight kit contains deployable wing, GPS/INS integrated navigation system, guidance and control system. Also this guidance kit was designed to use neither electrical nor mechanical interface with aircraft, and to increase dramatically the survivabilities of pilot and aircraft with the high accuracy and the mid-range non-powered gliding capability.