• 제목/요약/키워드: GPGPU(General Purpose Graphics Processing Units)

검색결과 32건 처리시간 0.029초

An Efficient Block Cipher Implementation on Many-Core Graphics Processing Units

  • Lee, Sang-Pil;Kim, Deok-Ho;Yi, Jae-Young;Ro, Won-Woo
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.159-174
    • /
    • 2012
  • This paper presents a study on a high-performance design for a block cipher algorithm implemented on modern many-core graphics processing units (GPUs). The recent emergence of VLSI technology makes it feasible to fabricate multiple processing cores on a single chip and enables general-purpose computation on a GPU (GPGPU). The GPU strategy offers significant performance improvements for all-purpose computation and can be used to support a broad variety of applications, including cryptography. We have proposed an efficient implementation of the encryption/decryption operations of a block cipher algorithm, SEED, on off-the-shelf NVIDIA many-core graphics processors. In a thorough experiment, we achieved high performance that is capable of supporting a high network speed of up to 9.5 Gbps on an NVIDIA GTX285 system (which has 240 processing cores). Our implementation provides up to 4.75 times higher performance in terms of encoding and decoding throughput as compared to the Intel 8-core system.

GPGPU와 Combined Layer를 이용한 필기체 숫자인식 CNN구조 구현 (Implementation of handwritten digit recognition CNN structure using GPGPU and Combined Layer)

  • 이상일;남기훈;정준모
    • 문화기술의 융합
    • /
    • 제3권4호
    • /
    • pp.165-169
    • /
    • 2017
  • CNN(Convolutional Nerual Network)는 기계학습 알고리즘 중에서도 이미지의 인식과 분류에 뛰어난 성능을 보이는 알고리즘 중 하나이다. CNN의 경우 간단하지만 많은 연산량을 가지고 있어 많은 시간이 소요된다. 따라서 본 논문에서는 CNN 수행과정에서 많은 처리시간이 소모되는 convolution layer와 pooling layer, fully connected layer의 연산수행을 SIMT(Single Instruction Multiple Thread)구조의 GPGPU(General-Purpose computing on Graphics Processing Units)를 통하여 병렬로 연산처리를 수행했다. 또한 convolution layer의 출력을 저장하지 않고 pooling layer의 입력으로 바로 사용함으로 메모리 접근횟수를 줄여 성능 향상을 기대했다. 본 논문에서는 이 실험검증을 위하여 MNIST 데이터 셋을 사용하였고 이를 통하여 제안하는 CNN 구조가 기존의 구조보다 12.38% 더 좋은 성능을 보임을 확인했다.

GPGPU 를 이용한 네트워크 트래픽에서의 HTTP 패킷 추출 성능 향상 (Performance Improvement in HTTP Packet Extraction from Network Traffic using GPGPU)

  • 한상운;김효곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.718-721
    • /
    • 2011
  • 웹 서비스를 대상으로 하는 DDoS(Distributed Denial-of-Service) 공격 또는 유해 트래픽 유입을 탐지 또는 차단하기 위한 목적으로 HTTP(Hypertext Transfer Protocol) 트래픽을 실시간으로 분석하는 기능은 거의 모든 네트워크 트래픽 보안 솔루션들이 탑재하고 있는 필수적인 요소이다. 하지만, HTTP 트래픽의 실시간 데이터 측정 양이 시간이 지날수록 기하급수적으로 증가함에 따라, HTTP 트래픽을 실시간 패킷 단위로 분석한다는 것에 대한 성능 부담감은 날로 커지고 있는 실정이다. 이제는 응용 어플리케이션 차원에서는 성능에 대한 부담감을 해소할 수 없기 때문에 고비용의 소프트웨어 가속기나 하드웨어에 의존적인 전용 장비를 탑재하여 해결하려는 시도가 대부분이다. 본 논문에서는 현재 대부분의 PC 에 탑재되어 있는 그래픽 카드의 GPU(Graphics Processing Units)를 범용적으로 활용하고자 하는 GPGPU(General-Purpose computation on Graphics Processing Units)의 연구에 힘입어, NVIDIA사의 CUDA(Compute Unified Device Architecture)를 사용하여 네트워크 트래픽에서 HTTP 패킷 추출성능을 응용 어플리케이션 차원에서 향상시켜 보고자 하였다. HTTP 패킷 추출 연산만을 기준으로 GPU 의 연산속도는 CPU 에 비해 10 배 이상의 높은 성능을 얻을 수 있었다.

GPU용 연산 라이브러리 CUDA를 이용한 블록암호 고속 구현 (High-Speed Implementations of Block Ciphers on Graphics Processing Units Using CUDA Library)

  • 염용진;조용국
    • 정보보호학회논문지
    • /
    • 제18권3호
    • /
    • pp.23-32
    • /
    • 2008
  • 그래픽 프로세서(GPU)의 연산 능력은 이미 CPU를 능가하고 있으며, 그 격차는 점점 벌어지고 있다. 따라서, 범용 계산에 그래픽 프로세서를 활용하는 GPGPU 연구가 활발히 전개되고 있으며, 병렬 처리가 필요한 분야에서 특히 두드러진 성과를 보이고 있다. GPU를 이용한 암호 알고리즘의 구현은 2005년 Cook 등에 의하여 처음 시도되었으며, OpenGL, DirectX 등의 라이브러리를 이용하여 개선된 결과들이 속속 발표되고 있다. 본 논문에서는 2007년 발표된 NVIDIA의 CUDA 라이브러리를 이용한 블록암호 구현 기법과 그 결과를 소개하고자한다. 또한, 소프트웨어로 구현된 블록암호 소스를 GPU 프로그램으로 이식하는 일반적인 방법을 제공하고자 한다. 8800GTX GPU에서 블록암호 AES, ARIA, DES를 구현했으며, 속도는 각각 4.5Gbps, 7.0Gbps, 2.8Gbps로 CPU보다 고속 구현이 가능하였다.

병렬프로세서를 활용한 레이더 신호의 식별 (An Identification Method of Radar Signals using Parallel Processor)

  • 김관태;주영관;박상환;전중남
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.75-80
    • /
    • 2017
  • 전자전지원 시스템(Electronic Warfare Support System)은 레이더 신호의 식별을 위해 수집한 신호의 주파수, 펄스폭, 펄스반복주기(PRI, Pulse Repetition Interval)등의 정보를 분석한 후 기존의 알려진 레이더 정보와 비교한다. 기존의 연구는 두 가지 단점이 있다. 첫 번째 단점은 기존의 알려진 레이더 정보를 마지막 비교단계에서만 비교한다는 점이다. 두 번째 단점은 PRI를 계산하기 위해 많은 연산이 필요하다는 점이다. 본 논문에서는 사전에 알려진 레이더 정보를 초기단계에서 활용하여 PRI를 계산하지 않고 수집된 신호에 미리 알고 있는 레이더 신호의 존재 여부를 식별하는 방법을 제안한다.

GPGPU를 이용한 가우시안 혼합 모델의 관측확률 계산 성능 향상 (Performance Improvement in Observation Probability Computation of Gaussian Mixture Models Using GPGPU)

  • 김형주;김승희;김상훈;장길진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.148-151
    • /
    • 2012
  • 범용 GPU (general-purpose computing on graphics processing units, GPGPU)는 GPU를 일반적인 목적으로 사용하고자 하는 병렬 컴퓨터 구조로써, 과학 연산 등 여러 분야에서 응용 프로그램의 성능을 향상시키기 위하여 사용되고 있다. 본 연구에서는 음성인식기에서 주로 사용되는 가우시안 혼합 모델(Gaussian mixture model, GMM)에서 많은 연산시간을 차지하는 관측확률 계산의 성능을 향상시키고자 GPGPU를 이용하는 알고리즘을 구현하였으며, 기존 CPU 기반 알고리즘 대비 약 13배 연산시간을 단축하였다.

RPC 기반 GPU 가상화 환경에서 다중 가상머신의 GPU 메모리 입력으로 인한 커널 함수의 지연 문제 분석 (Analyzing delay of Kernel function owing to GPU memory input from multiple VMs in RPC-based GPU virtualization environments)

  • 강지훈;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.541-542
    • /
    • 2021
  • 클라우드 컴퓨팅 환경에서는 고성능 컴퓨팅을 지원하기 위해 사용자에게 GPU(Graphic Processing Unit)가 할당된 가상머신을 제공하여 사용자가 고성능 응용을 실행할 수 있도록 지원한다. 일반적인 컴퓨팅 환경에서 한 명의 사용자가 GPU를 독점해서 사용하기 때문에 자원 경쟁으로 인한 문제가 상대적으로 적게 발생하지만 독립적인 여러 사용자가 컴퓨팅 자원을 공유하는 클라우드 환경에서는 자원 경쟁으로 인해 서로 성능 영향을 미치는 문제를 발생시킨다. 본 논문에서는 여러 개의 가상머신이 단일 GPU를 공유하는 RPC(Remote Procedure Call) 기반 GPU 가상화 환경에서 다수의 가상머신이 GPGPU(General Purpose computing on Graphics Processing Units) 작업을 수행할 때 GPU 메모리 입력 경쟁으로 인해 발생하는 커널 함수의 실행 지연 문제를 분석한다.

  • PDF

CUDA 기반의 병렬 프로그래밍을 통한 H.264/AVC 부호화 속도 향상 및 CPU 부하 경감 (Enhancement of H.264/AVC Encoding Speed and Reduction of CPU Load through Parallel Programming Based on CUDA)

  • 장은빈;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.858-863
    • /
    • 2010
  • H.264/AVC를 이용한 동영상의 부호화에서 그 속도를 높이기 위해서는 움직임 예측시간을 줄이는 것이 매우 중요하다. 본 논문에서는 H.264/AVC 부호기의 오픈 소스인 x.264를 대상으로 움직임 예측 알고리즘을 CUDA 기반에서 구현함으로서 기존의 압축 기술 이상의 속도 향상 및 CPU의 점유율을 경감 시킬 수 있음을 검증한다.

작업 처리 단위 변화에 따른 GPU 성능과 메모리 접근 시간의 관계 분석 (Analysis of GPU Performance and Memory Efficiency according to Task Processing Units)

  • 손동오;심규연;김철홍
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.56-63
    • /
    • 2015
  • 최신 GPU는 프로세서 내부에 포함된 다수의 코어를 활용하여 높은 병렬처리가 가능하다. GPU의 높은 병렬성을 활용하는 기법 중 하나인 GPGPU 구조는 GPU에서 대부분의 CPU의 작업을 처리가 가능하게 해주며, GPU의 높은 병렬성과 하드웨어자원을 효과적으로 활용할 수 있다. 본 논문에서는 다양한 벤치마크 프로그램을 활용하여 CTA(Cooperative Thread Array) 할당 개수 변화에 따른 메모리 효율성과 성능을 분석하고자 한다. 실험결과, CTA 할당 개수 증가에 따라 다수의 벤치마크 프로그램에서 성능이 향상되었지만, 일부 벤치마크 프로그램에서는 CTA 할당 개수 증가에 따른 성능 향상이 발생하지 않았다. 이러한 이유로는 벤치마크 프로그램에서 생성된 CTA 개수가 적거나 동시에 수행할 수 있는 CTA 개수가 정해져 있기 때문으로 판단된다. 또한, 각 벤치마크 프로그램별로 메모리 채널 정체에 따른 메모리 스톨, 내부연결망 정체에 따른 메모리 스톨, 파이프라인의 메모리 단계에서 발생하는 스톨을 분석하여 성능과의 연관성을 파악하였다. 본 연구의 분석결과는 GPGPU 구조의 병렬성 및 메모리 효율성 향상을 위한 연구에 대한 정보로 활용될 것으로 기대된다.

충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구 (Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading)

  • 민경조;;오세욱;조상호
    • 화약ㆍ발파
    • /
    • 제39권2호
    • /
    • pp.1-14
    • /
    • 2021
  • 최근에는 GPGPU(General-Purpose computing on Graphics Processing Units)와 같은 고성능 연산장치의 보급과 함께 국방, 우주항공분야에서 암질재료에 대한 충격실험을 대신할 수 있는 3차원 동적해석기법의 개발이 활발하게 진행되고 있다. 그러나 높은 충격하중을 수반하는 암 발파 또는 소형미사일 등의 지중 관통과 같은 과정을 실험적으로 관찰하거나 계측하는 것은 암질재료의 비 균질성 및 불투명성 때문에 어려움이 있었다. 본 연구에서는 고속충돌에 의한 암석의 파괴 거동을 모사하기 위하여 3차원 동적 파괴 과정 해석 기법 (3D-DFPA)를 개발하였으며, 연산속도를 향상시키기 위하여 순차해석(explicity analysis) 및 접촉요소검색(Searching algolitm of contact elements)에 GPGPU연산이 가능한 알고리듬을 적용하였다. 제안된 동적파괴과정해석 기법에 대한 검증을 위해 Straight Notched Disk Bending (SNDB) 석회암시료에 대한 동적파괴인성시험을 모사하였고, 충격응력파의 전파과정, 암석-충격봉 경계면에서 반사 및 전달과정, 암석 시료의 파괴과정을 비교분석하여, 개발된 해석기법에 대한 검증을 수행하였다.