• 제목/요약/키워드: GP (glycoprotein)

Search Result 129, Processing Time 0.13 seconds

Oligomerization of the substitution mutants of autographa californica nuclear polyhedrosis Virus (AcNPV) gp64 glycoprotein

  • Kim, Ki-Nam;Poo, Ha-Ryoung;Yang, Jai-Myung
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.72-77
    • /
    • 1997
  • The baculovirus gp64 glycoprotein is a major component of the envelope protein of budded virus (BV). It has been shown that the gp64 glycoprotein plays an essential role in the infection process, especialy fusion between virus envelope and cellular endosomic membrane. Recently we reported optimal conditions required for gp64-mediated membrane fusion in pGP64 DNA transfected Spodoptera frugiperda (Sf9) cells (H. J. Kim and J. M. Yang, Jour, Microbiology, 34.7-14). In order to investigate the role of hydrophobicity within the fusion domain of the gp64 glycoprotein for membrane fusion, 13 mutants which have substitution mutation within hydrophobic region I were constructed by PCR-derived site-derected mutagenesis. Each mutated gp64 glycoproteins was transiently expressed by transfecting plasmid DNA into Spodoptera frugiperda (Sf9) cells. Oligomerization of the transisently expressed gp64 glycoproteins was a nalysed by running them on SDS-polyacrylamide gel electrophoresis under non-reducing condition followed by immunoblotting. All of the mutant gp64 glycoproteins expect cysteine-228 were able to form trimers. These results suggest that hydrophobic region I of the gp64 may not be responsible for the oligomerization of the gp64 glycoprotein.

  • PDF

Analysis of fusogenic activity of autographa californica nuclear polyhedrosis virus (Ac NPV) gp64 envelope glycoprotein

  • Kim, Hee-Jin;Yang, Jai-Myung
    • Journal of Microbiology
    • /
    • 제34권1호
    • /
    • pp.7-14
    • /
    • 1996
  • Teh baculovirus gp64 glycoprotein is a major component of the envelope of budded virus (BV) and has been shown that it plays an essential role in the infection process, especially virus-cell membrane fusion. We have cloned Autographa californica Nuclear Polyhedrosis Virus (AcNPV) gp64 protein were examined for membrane fusion activity by using a synchtium formation assay under various conditions. The optimal conditions required for inducing membrane fusion are 1) form pH 4.0 to 4.8 2) 15 min exposure of cells to acidic pH 3) at least 1 .mu.g of gp64 cloned plasmid DNA per 3 * 10$^{6}$ cells 4) and an exposure of cells to acidic pH at 72 h post-transfection. In order to investigate the role of hydrophobicity of the gp64 glycoprotein for the membrane fusion, the two leucine residues (amino acid position at 229 and 230) within hydrophobic region I were substituted to alanine by PCR-derived site-directed mutagenisis and the membrane fusion activity of the mutant was anlaysed. The gp64 glycoprotein carrying double alamine substitution mutation showed no significant difference in fusion activity. This result suggested that minor changes in hydrophobicity at the amino acid position 229 and 230 does not affect the acid-induced membrane fusion activity of the gp64 glycoprotein.

  • PDF

Evaluating the Regulation of P-glycoprotein by Phytochemicals Using Caco-2 Cell Permeability Assay System

  • Choi, Ran Joo;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2014
  • P-glycoprotein (P-gp) is a permeability glycoprotein also known as multidrug resistance protein 1 (MDR1). P-gp is an ATP-binding cassette (ABC) transporter that pumps various types of drugs out of cells. These transporters reduce the intracellular concentrations of drugs and disturb drug absorption. The Caco-2 cell permeability assay system is an effective in vitro system that predicts the intestinal absorption of drugs and the functions of enzymes and transporters. Rhodamine-123 (R-123) and digoxin are well-known P-gp substrates that have been used to determine the function of P-gp. Efflux of P-gp substrates by P-gp has been routinely evaluated. To date, a number of herbal medicines have been tested with Caco-2 cell permeability assay system to assess bioavailability. There are growing efforts to find phytochemicals that potentially regulate P-gp function. The Caco-2 cell permeability assay system is a primary strategy to search for candidates of P-gp inhibitors. In this mini review, we have summarized the P-gp modulation by herbal extracts, decoctions or single components from natural products using Caco-2 cell permeability assays. Many natural products are known to regulate P-gp and herbal medicines could be used in combination with conventional drugs to enhance bioavailability.

포유동물 세포에서 Human Immunodeficiency Virus-1의 Oligomeric gp140 단백의 발현 및 특성 (Expression and Characterization of Human Immunodeficiency Virus-1 Oligomerized gp140 Protein in Mammalian Cells)

  • 김은옥;김은;김현수;신광순;김철중
    • 대한수의학회지
    • /
    • 제42권1호
    • /
    • pp.55-64
    • /
    • 2002
  • HIV-1의 envelope glycoprotein은 중화항체에 의한 체액성 면역반응의 중요한 target으로 surface glycoprotein인 gp120과 transmembrane glycoprotein인 gp41로 이루어져 있다. gp120과 gp41의 ectodomain으로 이루어진 gp140 유전자를 PCR의 방법으로 증폭하고 Semliki Forest virus(SFV) 유래 expression system을 이용하여 mammalian 세포에서 발현하였다. 발현된 gp140은 natural HIV-1에서와 같이 oligomer를 형성하였다. 발현된 gp140을 정제하여 BALB/c 마우스에 접종하여 항체가 형성되었음을 확인하였다.

Exploration of the Binding Mode of Indole Derivatives as Potent HIV-1 Inhibitors Using Molecular Docking Simulations

  • Balupuri, Anand;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.138-142
    • /
    • 2013
  • The HIV-1 envelope glycoprotein gp120 plays a vital role in the entry of the virus into the host cells. The crucial role of the glycoprotein suggests gp120 as potential drug target for the future antiviral therapies. Identification of the binding mode of small drug like compounds has been an important goal in drug design. In the current study we attempt to propose binding mode of indole derivatives in the binding pocket of gp120. These derivatives are reported to inhibit HIV-1 by acting as attachment inhibitors that bind to gp120 and prevent the gp120-CD4 interaction and thus inhibit the infectivity of HIV-1. To elucidate the molecular basis of the small molecules interactions to inhibit the glycoprotein function we employed the molecular docking simulation approach. This study provides insights to elucidate the binding pattern of indole-based gp120 inhibitors and may help in the rational design of novel HIV-1 inhibitors with improved potency.

진핵세포에서 HSV-1 Envelope 변이 단백질의 발현 및 발현 단백질의 특성 연구 (Expression and Characterization of the Human Immunodeficiency Virus Type 1 Mutant Envelope Glycoproteins in Mammalian Cells)

  • 류지윤;박진서
    • 대한바이러스학회지
    • /
    • 제29권3호
    • /
    • pp.183-193
    • /
    • 1999
  • Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is synthesized as a 160 KDa precursor, gp160, that is cleaved by a cellular protease to form the gp120 and gp41 subunits. Mammalian expression vectors were designed that are capable of efficient expression of various mutant envelope glycoproteins derived from a molecular clone of HIV-1. To construct these vectors, one type of mutation was made at the gp120-gp41 cleavage site by oligonucleotide-directed mutagenesis. And another mutation was made to change amino acids in the membrane spanning region of HIV-1 gp41 important for membrane anchorage. Next, these two mutations were combined to generate a vector to have double mutations in cleavage site and membrane-spanning region. These mutants were transiently expressed in mammalian cells. The effect of these mutations on envelope glycoprotein synthesis, proteolytic processing and secretion was determined. In addition, cell surface expression and ability of the glycoprotein to induce syncytium formation were examined. This study provides a mammalian expression system that is capable of efficient expression and secretion of soluble gp160.

  • PDF

Modulation of Multidrug Resistance in Cancer by P-Glycoprotein

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2011
  • Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp), resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had better tolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.

Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals

  • Khan, Muhammad;Maryam, Amara;Mehmood, Tahir;Zhang, Yaofang;Ma, Tonghui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6831-6839
    • /
    • 2015
  • Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.

양식 넙치, Paralichthys olivaceus에서 분리한 viral hemorrhagic septicemia virus (VHSV)의 항원성 분석 (Analysis of antigenicity of viral hemorrhagic septicemia virus (VHSV) glycoprotein from cultured olive flounder Paralichthys olivaceus)

  • 김수미;지보영;조미영;원경미;김진우;박수일
    • 한국어병학회지
    • /
    • 제24권2호
    • /
    • pp.75-84
    • /
    • 2011
  • 우리나라 양식 넙치에서 분리한 VHSV (KR'01-1)의 glycoprotein 아미노산 배열을 기초로 단백질 전환 구조상 유연성, 친수성 및 항원성이 높고, 표면에 노출되어 있을 가능성(surface probability)이 높다고 분석되는 3개의 peptide (Gp1, Gp2, Gp3)를 선정하였다. 정제한 바이러스 입자 및 3개의 합성 peptide에 대한 polyclonal 항체를 제작하여 항원성 분석을 실시한 결과, 합성 peptide로 제작한 모든 항혈청은 Western blotting 결과 VHSV의 구조단백질과 특이적으로 결합하는 나타났으며, 이 가운데 Gp1 및 Gp2 합성 peptide에 대한 항혈청은 양식 넙치에서 분리한 VHSV를 중화시키는 것으로 나타나, peptide-based antigen의 이용 가능성을 제시하였다.

In silico Study on the Interaction between P-glycoprotein and Its Inhibitors at the Drug Binding Pocket

  • Kim, Namseok;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2317-2325
    • /
    • 2014
  • P-glycoprotein (P-gp) is a member of the ATP-Binding Cassette transporter superfamily and mediates transmembrane efflux of many drugs. Since it is involved in multi-drug resistance activity in various cancer cells, the development of P-gp inhibitor is one of the major concerns in anticancer therapy. Human P-gp protein has at least two "functional" drug binding sites that are called "H" site and "R" site, hence it has multi-binding-specificities. Though the amino acid residues that constitute in drug binding pockets have been proposed by previous experimental evidences, the shapes and the binding poses are not revealed clearly yet. In this study, human P-gp structure was built by homology modeling with available crystal structure of mouse P-gp as a template and docking simulations were performed with inhibitors such as verapamil, hoechst33342, and rhodamine123 to construct the interaction between human P-gp and its inhibitors. The docking simulations were performed 500 times for each inhibitor, and then the interaction frequency of the amino acids at the binding poses was analyzed. With the analysis results, we proposed highly contributing residues that constitute binding pockets of the human P-gp for the inhibitors. Using the highly contributing residues, we proposed the locations and the shapes of verapamil binding site and "R" site, and suggested the possible position of "H" site.