• Title/Summary/Keyword: GNU Radio platform

Search Result 8, Processing Time 0.023 seconds

Implementation of SDR Platform for LTE using GNU Radio and NDK of TI DSP (GNU Radio와 TI DSP의 NDK를 이용한 LTE SDR 플랫폼 구현)

  • Jin, Hwajong;Kim, Daejin;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.93-99
    • /
    • 2018
  • This paper presents an implementation method using NDK (Network Developer's Kit) of GNU (GNU is Not Unix) Radio and Multicore DSP (Digital Signal Processor) to implement LTE (Long Term Evolution) SDR (Software Defined Radio) Platform. In order to satisfy 1.4MHz, 3MHz, 5MHz and 10MHz of the bandwidth supported by LTE, USRP (Universal Software Radio Peripheral) X series which is an RF (Radio Frequency) transceiver of Ettus Research was used. To control this, GNU Radio which is an open source software radio toolkit was used. We also used NDK from TI (Texas Instruments) DSP to transfer data between USRP and DSP. Experimental results show throughput results according to each bandwidth, thus confirming the feasibility of implementing LTE SDR Platform using GNU Radio and NDK of TI DSP.

Vulnerability Analysis of Bluetooth Communication based on GNU Radio (GNU Radio 기반 블루투스 통신 취약점 분석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2014-2020
    • /
    • 2016
  • In general, automatic access control management system using smart door-lock must be always exposed to security vulnerability during wireless communication based on Bluetooth. In particular, important information such as a secrete key can be exposed to the attacker when the authentication protocol has been operating in the wireless section. Therefore important information exchanged in the radio section needs to be properly encrypted. In order to analyze security vulnerability for automatic access control management system of public facilities such as subway vent, GNU Radio platform and HackRF device will be considered and experimented. Proposed experimental system to perform software based power analysis attack could be very effectively applied. As a result, important information such as packet type, CRC, length of data, and data value can be easily decoded from wireless packet obtained from HackRF device on GNU Radio platform. Constructed experimental system will be applied to avoid some security problems.

Implementation of Spectrum-Sensing for Cognitive Radio Using USRP with GNU Radio and a Cloud Server

  • Thien, Huynh Thanh;Tendeng, Rene;Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • In cognitive radio (CR), spectrum sensing is an essential function since secondary users (SUs) must determine whether the primary user (PU) is utilizing the channel or not, and furthermore, SUs opportunistically access the licensed channel when the PU is absent. In this paper, spectrum sensing is implemented by energy detection, and a software-defined radio testbed is built to evaluate sensing performance by energy detection in a real environment. In particular, the testbed was built based on the GNU's Not Unix (GNU) Radio software platform and Universal Software Radio Peripheral National Instruments 2900 devices. More specifically, a new block of energy detection is developed by using an out-of-tree module from GNU Radio. To successfully integrate CR into the cloud computing paradigm, we also implement cloud computing-based spectrum sensing by utilizing a cloud server with ThingSpeak, such that we can store, process, and share the sensing information more efficiently in a centralized way in the cloud server.

Design and Implementation of Dual-Mode Cordless Phone and walkie-Talky System: A Software Radio Approach (소프트웨어 라디오 방식의 무선전화기 및 워키토키 이중 모드 시스템의 구현)

  • Sung, Min-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.674-680
    • /
    • 2008
  • An SDR (Software Defined Radio) system based on general purpose computing platform has benefits of ease of software development process, high degree of software compatibility, and cost-effectiveness of general purpose processors. This paper discusses design and implementation of a dual-mode SDR system that supports both cordless phone and walkie-talky system running on Linux-based general purpose computing platform. For this purpose, we designed modulation and demodulation software on open source-based GNU radio middleware. We also designed a customized RF front-end hardware which performs frequency conversion between RF and IF. The proposed SDR system successfully exhibited its ability to operate both cordless phone and walkie-talky communication on Intel processor-based general purpose computing platform. But experience with the prototype SDR system shows that further research is required for run-time software reconfiguration and efficient integration with conventional TCP/IP protocol stacks.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

Spectrum Sensing System in Software-defined Radio to Determine Spectrum Availability

  • Llames, Gerome Jan M.;Banacia, Alberto S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.100-106
    • /
    • 2016
  • Spectrum sensing is an integral part of cognitive radio, which seeks to address the perceived spectrum scarcity that is caused by inefficient utilization of the available spectrum. In this paper, a spectrum sensing system using energy detection for analog TV and FM broadcast transmitters as well as modified Integrated Services Digital Broadcasting Terrestrial (ISDB-T) signals is implemented on a software-defined radio platform using GNU' Not Unix (GNU) radio and the N200 Universal Software Radio Peripheral (USRP). Real-time implementation and experimental tests were conducted in Metro Cebu, a highly urbanized area in the southern part of the Philippines. Extensive tests and measurements were necessary to determine spectrum availability, particularly in the TV band. This is in support of the Philippine government' efforts to provide internet connectivity to rural areas. Experimental results have so far met IEEE 802.22 requirements for energy detection spectrum sensing. The designed system detected signals at -114 dBm within a sensing time of 100 ms. Furthermore, the required $P_d({\geq}90)$ and $P_{fa}({\leq}10)$ of the standard were also achieved with different thresholds for various signal sources representing primary users.

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

Implementation and Verification of Channel Adaptive Private Broadcasting System Based on USRP (USRP기반 채널 적응형 개인방송시스템 구현 및 검증)

  • Yoo, Sinwoo;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.694-702
    • /
    • 2022
  • This paper shows a small and low-powered wireless communication system based on the ATSC broadcasting system using the ISM frequency band that can be used as a PBS(Personal Broadcasting System). It is designed to demonstrate a channel-adaptive CR(Cognitive Radio) system to provide a better service quality in the unlicensed band where co-channel interference exists. And it achieved very reliable communications by a closed-loop active phased array antenna. This ATSC-based personal broadcasting platform can be modified easily with given flexibility by using GNU Radio as an open-source signal processing platform based on USRP and implementing additional functions in FPGA. In addition, the chosen communication frequency resource can be managed and controlled by the return channel that transmits the channel status and communication parameters between transmission and reception in real-time.