• Title/Summary/Keyword: GNSS technology

Search Result 308, Processing Time 0.024 seconds

The Development of AtoN Monitoring System with AIS Viewer (AIS Viewer와 연계한 AtoN 관리시스템 개발에 관한 연구)

  • Seong, Yu-Chang;Lee, Yong-Jae;Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.297-302
    • /
    • 2010
  • The AtoN is subsidiary navigation facilities for ship to navigate safely. AtoN includes signs of visual, sound, special and radio. Receltly as GNSS and AIS are developed rapidly, AtoN has been considered as a promising candidate technique for ensuring fairway safety of ship. However, present AtoN systems are not adopted to ship fully, but are adopted to ship partly, and total management systems are not installed. In this study, AtoN Monitoring system based on AIS is developed. It consists of AIS system and AIS viewer program. In the system AIS gathers data of AtoN and ship information and AIS viewer is a program that plots AIS data on ECDIS.

Accuracy Evaluation of the Height Determined by Network-RTK VRS Positioning (네트워크 RTK VRS 측량에 의한 표고정확도 평가)

  • Lee, Suk Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • Network-RTK GPS positioning technique based on national CORS(Continuous Operating Reference Station) and wireless internet access as like VRS and FKP was developed to overcome the limitations of traditional RTK technique. In Korea, NGII(National Geographic Information Institute) provides network-RTK service based on 51 CORS and mobile internet network. The purpose of this study is the accuracy evaluation of the height determined by GPS VRS technique based on network-RTK, So, in this study GPS VRS positioning was accomplished through 1st level BM line located at Sancheong~Jinju and $2^{nd}$ level BM line located at Geochang~Sancheong and the average error of the each BM line was calculated as 2.15cm and 1.80cm respectively. This result shows that GPS VRS height positioning can be used in $3^{rd}$ and 4th public BM leveling and also work regulation is needed to apply the GPS VRS height positioning.

Prediction on the Effect of Multi-Constellation SBAS by the Application of SDCM in Korea and Its Performance Evaluation (SDCM의 국내 적용 및 성능 평가를 통한 다중 위성군 SBAS의 효과 예측)

  • Lim, Cheol-soon;Seok, Hyo-jeong;Hwang, Ho-yon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.417-424
    • /
    • 2016
  • Russia recently began broadcasting the SDCM signal in order to provide SBAS service for the civil aviation in the Russian territory using its own geostationary satellites. The service coverage of the SDCM geostationary satellite, LUCH-5A and LUCH-5B, includes Korea peninsula, where the test signal from the pseudo random number (PRN) 140 is received. This paper shows that the position accuracy at the Chulwon GNSS site is improved to 0.8749 m (horizontal) and 0.9589 mm (vertical) by applying the received SDCM message to the RINEX data. Considering that the SDCM augments both GPS and GLONASS, the performance of multi-constellation SBAS was compared to that of GPS-only SBAS, and APV-I availability was improved by decreasing the protection level about 30 %. From the results, we can expect that the mult-constellation SBAS can contribute to the performance enhancement of the future KASS.

Comparison of ILS and GBAS Through Flight Test in Taean Aerodrome and Kimpo Airport (태안 비행장과 김포공항 비행시험을 통한 ILS와 GBAS 비교)

  • Koo, Bon-Soo;Kim, Woo-Ri-Ul;Ju, Yo-Han;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.192-198
    • /
    • 2015
  • Since instrument landing system currently operating in most airports is operating in single-pass, it is not possible to accommodate a large number of aircraft. A satellite navigation system GBAS using a GNSS has been developed to solve these limitation when air traffic increases. GBAS is better than the ILS in position accuracy and capable of landing through multiple paths rather than a single path, the aircraft can perform varied landing procedures. In this paper, after we established a virtual ILS procedures at Taean Airfield in which ILS installation is impossible due to environmental requirements and airspace restrictions, flight test was performed by Cessna Skyhawk 172 to compare the virtual ILS procedures and curved approach procedure and the advantage of curved approach was confirmed.

Considerations on In-Flight Validation for KASS (KASS 비행시험 및 검사 시 고려사항 분석)

  • Koo, Bon-Soo;Lee, Eun-Sung;Nam, Gi-Wook;Kang, Jae-Min;Cho, Jeong-Ho;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Method establishment needs for recent shortening the flight path, fuel reduction, reduction of the flight delay time, increase of the route capacity like as relieve congested airspace and solving future demand. However, As the existing conventional navigation systems is impossible to be resolved. Hereupon, SBAS has been developed with using the GNSS. ICAO has recommended that SBAS need to be operated with aircraft operation from 2025, korea is also developing KASS in accordance with the recommendation. In this paper, before the 2022 KASS will be completed, KASS can be expected using for flight test and inspection as analyzing KASS flight test and relative specifications.

An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products (IGS RTS와 Ultra Rapid 실시간 성능 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.

A Study On The Effect of CDTI With Air Traffic Information (항공교통정보가 제공되는 CDTI 효과 연구)

  • Gil, Hyun-Cheol;Ahn, Dong-Mhan;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.611-618
    • /
    • 2012
  • ICAO has recommended the introduction of New CNS/ATM based on GNSS technologies and Data link communication to purpose increasing air traffic demand. The CNS/ATM is composed of communication, Navigation, Surveillance and Air Traffic Management. Cockpit Display Traffic Information(CDTI) that is equipment to share air traffic information to Pilot, Traffic Controller and ground vehicles has been built based on Automatic Dependent Surveillance-Broadcast(ADS-B) information in Surveillance field. This paper is research that what is the effect between pilot and controller through CDTI. Based on ATC communication between Pilot and Controller, We construct simulation environment and did a comparative analysis of it. according to result, We can verify that CDTI makes aircraft Call sign, Position, Altitude information read rate, and notice of air traffic information between Pilot and Controller more improve than ATC environment and Existing Radar System.

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

A Study for Method of Curved Approach Using the GPS to Apply VFR Airport (GPS를 이용한 VFR 공항에서의 곡선접근 방법에 관한 연구)

  • Ju, Yo-Han;Jun, Hyang-Sig;Jeong, Myeong-Sook;Park, Soo-Bog;Hong, Seung-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2014
  • Recently a system is being required to replace ILS due to increasing air traffic. In this paper, Curved approach is applied to an airport where ILS approach cannot be applied due to its geographical condition and restricted aerospace condition, and verified by flight test. After analysing conditions of Tae-an airfield of Hanseo University with virtual ILS approach, airfield applicability was evaluated by Curved approach using by GPS. Normally simulation is performed after establishing approach procedure using electric map, but recently verification is being performed by flight test without simulation because accuracy and reliability are increased. In this paper, established procedure is verified modified by flight test with Pilot Test and Auto Pilot test and controllability and passenger's stability were also checked.

A Study on EUROFIX Reed Solomon Code Design Using Finite Galois Field Fourier Transformation (유한체 푸리에 변환을 이용한 EUROFIX RS Code 설계에 관한 연구)

  • Kim, Min-Jee;Kim, Min-Jung;Chung, Se-Mo;Cho, Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • This paper deals with Reed-Solomon Coding for EUROFIX system EUROFIX is an integrated navigation and communication system, which combines Differential GNSS and Loran-C EUROFIX transmits DGNSS(Differential Global Navigation Satellite Systems) (data by pulse position modulation of Loran-C pulses. Loran-C system is regarded as a satellite backup system in recent. And now, it is important to detect and correct much errors in communication systems. Error corrections or correction algorithm is actively studied nowadays because of this. In this paper, we study and design encoder and decoder of Reed Solomon Code using Finite Galois Field Fourier Transformation for error corrections in EUROFIX data transmission. Through extensive simulation, the designed Reed Solomon code is shown to be effective for error correction in EUROFIX data transmission.