• Title/Summary/Keyword: GMR sensor

Search Result 30, Processing Time 0.021 seconds

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Developing Wearable Joystick Device Using Magnetic Sensor (자기장 센서를 이용한 웨어러블 조이스틱 장치의 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • There has been demand for many magnetic sensor applications, and to develop low-cost devices, it is critical to accurately understand the behavior of the magnetic field and the characteristics of magnetic sensors and target devices during initial development phase. The magnetic field has been known to have very complicated nonlinear data to calculate, so it has required expensive computing machines or research to accurately calculate the magnetic sensor values. However, this paper introduces a characteristic of a magnetic sensor called the giant magnetoresistance (GMR) and proposes simple and sufficient approaches to develop a wearable joystick device using a magnetic sensor. Particularly, this paper introduces the design factors for how to properly develop a low-cost wearable joystick device using magnetic sensors after carefully considering the mechanism of a real joystick and the characteristics of magnetic sensors. As a result, user test results are provided to show how users can operate this new wearable joystick device.

Comparison of $La_{1-x}Ca_{x}MnO_{3}$ Properties by Glycine Nitrate Process and Solid State method for GMR sensor (CMR Sensor 제조를 위한 자발착화 연소합성법(GNP)과 고상반응법으로 제조한 $La_{1-x}Ca_{x}MnO_{3}$ 분말의 물성 비교)

  • Kang, Young-Chul;Park, Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.882-884
    • /
    • 1999
  • 금속 다층박막과 미세입상 합금박막에서 발견된 Giant Magnetoresistance(GMR)현상에 고무되어 최근에는 50년대에 밝혀졌던 산화물 자기저항 재료에 관하여 새롭게 연구하고 있다. Perovskite 구조를 가지는 $La_{1-x}Ca_{x}MnO_{3}$ 박막에서 큰 자기저항을 얻었으며 이를 Colossal Magentoresistance (CMR)이라 한다. 본 연구에서는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 고상반응법과 자발착화연소 합성법(Glycine-Nitrate Process)으로 각각 제조하였으며 비교 분석하였다. TGA을 이용하여 불순물과 미반응 물질을 확인하여 적당한 하소온도를 결정하였고 XRD를 이용하여 결정상을 분석하였다. Dilatometer를 이용해 $1400^{\circ}C$까지의 열팽창율을 측정하였다. BET로 비 표면적을 비교하였으며, 주사전자현미경(SEM)으로 각각 제조된 분말의 입자상태와 입자성장을 확인하였다. GNP법으로 합성한 경우가 고상반응법을 이용한 경우보다 입자의 크기가 submicron 단위로 미세하고 비표면적도 수배 컸으며, 고순도의 perovskite 구조를 갖는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 얻을 수 있었다.

  • PDF

Studies on the Fabrication and Properties of $La_{1-x}Ca_xMnO_3$ by Glycine-Nitrate Process and Solid State Reaction Method fort the CMR sensor (CMR sensor 응용을 위한 자발착화 연소합성법(GNP)과 고상반응법에 의한 $La_{1-x}Ca_xMnO_3$ 분말의 제조 및 물성에 관한 연구)

  • Kang, Young-Chul;Park, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.137-141
    • /
    • 1999
  • 금속 다층박막과 미세입상 합금박막에서 발견된 Giant Magnetoresistance(GMR) 현상에 고무되어 최근에는 50년대에 밝혀졌던 산화물 자기저항 재료에 관하여 새롭게 연구하고 있으며 perovskite 구조를 가지는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 박막에서 큰 자기저항을 얻었으며 이를 Colossal Magentoresistance (CMR) 이라 부른다. 본 연구에서는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 분말을 하소온도를 700-90$0^{\circ}C$로 변화시킨 고상반응법과 자발착화연소합성법(Glycine-Nitrate Process) 으로 각각 제조하였으며 비교 분석하였다. TG-DTA을 이용하여 불순물과 미반응 물질을 확인하여 적당한 하소 온도를 결정하였고 XRD를 이용하여 결정상을 분석하였다. 주사전자현미경(SEM)으로 각각 제조된 분말의 하소후 입자의 크기를 비교하였다. GNP법으로 합성한 경우가 고상반응법을 이용한 경우보다 입자의 크기가 submicron 단위로 미세하고 균질하며 고순도의 perovskite 구조를 갖는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 분말을 얻을 수 있었다.었다.

  • PDF

Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles (미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안)

  • 좌성훈
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.310-317
    • /
    • 2000
  • With use of (G)MR head, thermal asperity (TA) has been a big concern in drive industry. In this study, we investigated several factors of heads and disks which affects the TA sensitivity of the drive. TA experiments were conducted by introducing the particles on the drives using a particle injection chamber. It was found that the slider ABS shape can help to reduce TA or contamination in the head/media interface. However, TA sensitivity of the drive mainly depend on the intrinsic property of (G)MR sensor. GMR head is much less sensitive to TA compared with MR head. However, in case that the same bias current was applied for both of MR and GMR head, TA sensitivity of GMR head became almost identical to that of MR head. Therefore it was found that the bias current is a dominant factor in determining TA sensitivity of the head. TA sensitivity of different types of disks was also studied. The scratch resistance of the carbon overcoat layer is the one of the main factors which influence TA rejection capability of the disks.

  • PDF

Estimation of Cloud Liquid Watetr used by GMS-5 Observations (GMS-5 자료를 이용한 구름 수액량 추정 연구)

  • 차주완;윤홍주
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • The CLW (Cloud Liquid Water) is a parameter of vital interest in both modeling and forecasting weather. In mesoscale models, the magnitude of latent heat effects corresponds to the amount of CLW, which is important in the development of a certain weather system. The goal of this study is the estimation of CLW by GMS-5 data which is compared with that of SSM/I data and GMR(Grounded Microwave Radiometer)data. First of all, we found out the relationship of cloud albedo to cloud thickness, and caculated the CLW using the result of the relationship. The CLW amount of SSM/I or GMR and that of GMS-5 were compared, respectively. The correlation coefficient was about 0.86 and RMSE was 9.23 mg/$cm^2$ between GMS-5 data and GMR data. And also the correlation coefficient was 0.84 and RMSE was 14.02 mg/$cm^2$ between GMS-5 data and SSM/I data.

Observation of Water Level and Temperature Properties by using a Giant Magnetoresistance-Spin Valve Film

  • Choi, Jong-Gu;Park, Kwang-Jun;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.214-218
    • /
    • 2012
  • The water level and temperature properties for the cooling system of potassium titanyl phosphate laser systems were observed. The middle point of the GMR-SV magnetoresistance curve is set in the neighborhood of high magnetic sensitivity (2.8 %/Oe). The experimental results for resistance dependence on water height and temperature showed linear regions with rates of 0.4 ${\Omega}/mm$ and 0.1 ${\Omega}/^{\circ}C$, respectively. The proposed results were found to be for adjusting the water level and temperature in the laser cooling system.

A Study on the Characteristics of Giant Magneto Resistance using Multi Layers (다층막을 이용한 거대자기저항(GMR)의 특성 연구)

  • Kim, Byeong-Woo;Lee, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2008
  • We have developed an integrated giant magneto resistance using not only circuit but also integrating technique with semiconductor for automobile application. It has four elements used for giant magneto resistance sensor. Ni-Fe/Cu multi layers were prepared on a glass substrate by magnetron sputtering. The dependence of magneto resistance on the thickness of the Ni-Fe and Cu layers was investigated. The MR ratio showed a saturated a peak at Cu layer $10{\AA}$, Ni-Fe layer $50{\AA}$, where the MR ratio is about 8.7% at room temperature. By means of Ni-Fe multi film and specific integrating technique, these new giant magneto resistance sensor showed excellent resistance characteristics.