• Title/Summary/Keyword: GMR

Search Result 176, Processing Time 0.029 seconds

PCCR(ECCP) Design of Great Man-made River Project (GMR 공사에 적용된 PCCP(EC)의 설계)

  • 김영수;최인식;신경수;김두영;이원재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.686-693
    • /
    • 1998
  • Prestressed Concrete Cylinder Pipe(PCCP) is used in water transmission pipeline of the Great Man-made River Project(GMR Project). In domestic area, PCCP is used for water cooling systems of Uljin and Youngkwang nuclear power plants. In abroad, especially in the United States and Canada PCCP supplies virtually every metropolitan area with raw and treated water. Compared with other pipe types, PCCP manufacturing cost is dear. But total cost can be considered as economical due to low installation and maintenance cost. Previously, the designs of PCCP were generally determined from one of two appendices in American Water Works Association(AWWA)standard C301 which provided two design methods-cubic parabola design method and stress analysis design method. In 1992, the design procedure for PCCP expanded from two alternatives to the most huge and complex AWWA standard C304. Because C304is so large, it takes too much time for the engineer to read and understand the design concepts and procedures. In this paper, the AWWA C304 design procedures are segmented into simple, understandable sections and concepts and explained. Each section or concepts is compared to the previous design procedure to highlight the revisions and reasons for them. Also the PCCP design program was developed and the design program results are compared with the calculations of the GMR project design consultant.

  • PDF

Uniaxial Magnetic Anistotropy of a NiO-Spin Valve Device

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • The shape anisotropy effect of a giant magnetoresistance-spin valves (GMR-SV) device with a glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe layered structure for use in the detection of magnetic property of molecules within a cell was investigated. The patterned device was given uniaxial anisotropy during the sputtering deposition and vacuum post-annealing, which was performed at $200^{\circ}C$ under a 300 Oe magnetic field. The pattern size of the device, which was prepared through the photolithography process, was $2{\times}15\;{\mu}m^2$. The experimental results confirmed that the best design for a GMR-SV device to be used as a biosensor is to have both the axis sensing current and the easy axis of the pinned NiO/NiFe/CoFe triple layer oriented in the direction of the device's width, while the easy axis of the free CoFe/NiFe bilayer should be pointed along the long axis of the device.

The Effect of Residual Stress on Magnetoresistance in GMR Head Multilayers (자기기록 MR 헤드 용 다층박막의 자기저항에 미치는 잔류응력 효과)

  • Hwang, Do-Guwn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.322-327
    • /
    • 2003
  • Giant magnetoresistance(GMR) NiO multilayer, which has been used to reading head of highly dense magnetic recording, was fabricated, and oxidized in an air during 80 days to study the dependence of magnetoresistance properties on residual stress in the interfaces. The magnetoresistance ratio and the exchange biasing $field(H_{ex})$ of $NiO(60nm)/Ni_{81}Fe_{19}(5nm)/Co(0.7nm)/Cu(2nm)/Co(0.7nm)/Ni_{81}Fe_{19}(7nm)$ spin valves were increased from 4.9% to 7.3%, and 110 Oe to 170 Oe after natural oxidation in the atmosphere for 80 days, respectively. The sheet resistivity ${\rho}$ decreased from $28{\mu}{\Omega}m$ to $17{\mu}{\Omega}m$, but ${\Delta}p$ did not almost change after the oxidation. Therefore, the increase of MR ratio is due to the decrease in the sheet resistivity. the reduced resistance may result from the increase in the reflection of conduction electrons at the oxidized top surface. Also, the increase in the exchange biasing field is originated from the reduction of residual stress at the interface of $NiO/Ni_{81}Fe_{19}$ according as the aging time increases.

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film (NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성)

  • Choi, Jong-Gu;Kwak, Tae-Joon;Lee, Sang-Suk;Sim, Jung-Taek
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.