• 제목/요약/키워드: GMM Method

검색결과 301건 처리시간 0.021초

폐색 영역을 고려한 시간 축 스테레오 매칭 (Temporal Stereo Matching Using Occlusion Handling)

  • 백으뜸;호요성
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.99-105
    • /
    • 2017
  • 스테레오 정합은 두 영상의 색상과 공간 유사성이 최대가 되는 지점을 찾아 깊이 정보를 예측한다. 그런데, 두 시점 사이에 발생하는 폐색 영역으로 잘못된 깊이 정보를 얻게 되고, 폐색 영역을 보완하지 않은 깊이 정보는 시간 축 스테레오 매칭에서 잡음을 전파하는 문제를 일으킨다. 본 논문은 폐색 영역을 보완하여 시간 축 상에서 발생하는 잡음의 전파를 줄이고, 정확한 깊이 정보를 공유하여 스테레오 매칭의 정확성을 높이는 방법을 제안한다. 제안한 알고리즘을 수행하기 위해 색상과 공간의 유사성을 계산하는 함수를 정의하여 초기 깊이 정보를 예측하고, 세 가지 제약사항을 고려한 에너지 함수를 세워 (EM: expectation maximization) 으로 폐색 영역을 구한 뒤, 동적 프로그래밍 방법으로 예측된 폐색 영역을 보정한다. 끝으로, 이전시점에 구해진 정확한 깊이 정보를 사용하여 시간 축 스테레오 매칭을 수행한다. 실험을 통해 제안한 알고리즘이 기존의 폐색영역 예측 방법보다 우수한 성능을 가지는 것을 알 수 있었으며, 시간 축 정보를 고려하지 않은 스테레오 매칭 방법보다 정확한 결과를 얻는 것을 확인할 수 있었다.

GMM(Gaussian Mixture Model)을 적용한 영상처리기법의 연속류도로 사고 자동검지 알고리즘 개발 (Development of the Algofithm for Gaussian Mixture Models based Traffic Accident Auto-Detection in Freeway)

  • 오주택;임재극;여태동
    • 대한교통학회지
    • /
    • 제28권3호
    • /
    • pp.169-183
    • /
    • 2010
  • 영상기반의 교통정보수집시스템은 관리 및 운영상의 한계를 보이고 있는 기존의 루프검지기의 역할을 대체하는 검지기로써의 역할 뿐만 아니라 다양한 교통류의 정보를 제공하고 관리할 수 있으며, 교통사고의 발생전과 후의 순차적인 상황을 정확히 기록하고, 이 자료를 통해 발생된 교통사고의 사고 매커니즘을 객관적이고 명확하게 조명하고 분석하는 것은 교통사고 처리에 있어서 중요한 부분을 차지함으로서, 여러 나라에서 보급 활용되고 있다. 본 논문에서는, 기존 기술들이 연속류 도로의 특성인 속도변화, 교통량 변화, 점유율 변화와 같은 교통류 흐름을 반영하여 1차 예비판단을 실시하였다. 또한, 1차 예비판단된 경우 영상추출 및 처리를 통해 최종 사고판단을 실시하게 된다. 이 때, 도로상의 다양한 환경적 변화로 인해 극복하기 어려운 차량의 객체추출, 객체분리, 추적 등의 정확성을 확보하기 위해서 계산속도와 정확도 측면에서 우수함을 보이고 있는 Adaptive GMM(Gaussian Mixture Model) 기반으로 실시하였으며, 환경적인 요인으로 인해 자주 발생하고 있는 오 검지 상황들을 효과적으로 저감시킬 수 있는 능동적이고 환경적응적인 기법을 통해 사고 최종판단을 실시하였다. 이렇게 구현된 기술의 성능을 평가하고자 중부내륙 실험도로에서 12건의 사고 모의실험을 실시하였으며, 실제 운용되고 있는 장항IC에서의 사고영상을 실시간 온라인으로 입력받아 시험하였다. 결과적으로, 검지율 93.33%, 오검지 6.7%로 높은 신뢰성을 보였다.

실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 - (A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case -)

  • 장혁수;이봉규
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.15-26
    • /
    • 2014
  • 본 연구는 실물옵션모형을 이용하여 기업의 빅데이터 기술도입에 따른 경제적 가치를 분석한 연구로, 빅데이터 기술도입을 결정한 기업의 주가를 이용하여 주가증분으로 평가한 경제적 가치의 크기를 옵션가치를 통해 분석하였다. 옵션가치 도출을 위해 빅데이터 기술을 마케팅에 활용한 기업의 주가를 통해 빅데이터 기술에 의한 주가증분을 추출하고, 해당 주가로 일반화적률법(GMM)을 이용하여 확률과정을 추정하였다. 옵션가치 도출을 위해 블랙-숄즈 편미분방정식을 도출하였고, 이를 수치해석적 방법인 유한차분법으로 해를 구하여 빅데이터 기술 도입에 따른 경제적 가치를 추정하였다. 분석결과, 빅데이터 투자비용을 5천만 원으로 가정했을 때, 주가증분을 통해 도출한 옵션가치는 약 38.5억 원으로 나타났고 시간가치는 약 1백만에 해당하는 것으로 나타났다. 따라서 빅데이터 기술도입은 실질적인 기업의 수익을 창출하는 효과에 더하여, 미미하지만 투자시점에 고려할 수 있는 추가적 시간가치까지 존재하는 것으로 해석된다. 민감도분석 결과 기초자산 크기가 작아질수록 옵션가치는 낮아지고, 투자비용이 낮아질수록 옵션가치는 높아지는 것으로 분석되었고, 변동성 변화에 따른 옵션가치 민감도는 크지 않은 것으로 나타났는데 이는 빅데이터 기술의 경우 기술도입 기간과 이에 따른 주가변동 폭이 낮아 변동성 증가에 따른 내재가치 증가 효과가 크지 않기 때문인 것으로 해석된다. 본 연구는 빅데이터 기술도입에 따른 효과를 실물옵션을 도입하여 분석한 최초의 연구로 빅데이터 옵션가치 도출에 빅데이터 기술을 도입한 기업의 주가를 기초자산으로 사용한 최초의 연구라는 점에서 기존연구와 차별화된다. 기업들의 빅데이터 기술 도입이 비교적 최근에 발생하였음을 고려할 때 동 분석방법론을 다양한 기업에 적용함으로 빅데이터 기술의 정체한 가치를 도출하는데 기여할 수 있을 것으로 기대된다.

한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기법에의 활용 방안 (Clustering of sediment characteristics in South Korean rivers and its expanded application strategy to H-ADCP based suspended sediment concentration monitoring technique)

  • 노효섭;손근수;김동수;박용성
    • 한국수자원학회논문집
    • /
    • 제55권1호
    • /
    • pp.43-57
    • /
    • 2022
  • 유사량 계측 기술의 발달로 초음파 도플러 유속계(ADCP)의 산란도가 부유사 농도와 관계가 있다는 특성을 이용해 부유사의 농도를 짧은 시간 간격으로 계측하여 부유사 관측의 비용과 위험 문제를 극복하고자 하는 노력이 지속되고 있다. 국내에는 자동 유량 관측소에 횡방향 ADCP (H-ADCP)가 설치되어 있어 실시간으로 부유사 농도를 계측하는 기술의 적용이 가능하지만 자동 유량 관측소와 부유사 관측소의 위치가 항상 일치하지는 않아 모든 관측소에서의 모형 개발은 불가한 실정이다. 본 연구에서는 이러한 문제를 극복하기 위해 H-ADCP가 설치된 유사량 관측소 9개소에 대해 부유사 농도를 계측하는 H-ADCP-SSC 관계식을 개발하고 그 결과의 적용성에 대해 고찰하였다. 그리고 부유사 관측소별로 나타나는 특징에 대해 알아보기 위해 한국 하천의 부유사 관측소 44개소의 유역면적, 부유사와 하상토의 입도분포, 유량-유사량 관계식 등의 유사특성 자료를 이용해 비지도 기계학습 기법인 가우시안 혼합 모형(GMM)으로 군집분석을 수행하였다. 군집화 결과, 유사량 관측소를 공간적으로 구분해낼 수 있었으며, 특히 하천의 본류와 지류의 유사 특징을 구분해낼 수 있었다. 결과적으로, H-ADCP-SSC 관계식과 부유사 관측소의 군집분석 결과를 종합해 H-ADCP-SSC 관계식이 개발되지 않은 자동 유량 관측소에서 관계식을 적용하는 부유사 농도를 실시간으로 계측할 수 있도록 하는 프로토콜을 제안하였다.

Impacts of Corruption Control on Economic Growth in Relationship with Stock Market and Trade Openness

  • PHAM, Van Thi Hong
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.73-84
    • /
    • 2020
  • The study aims to investigate the dual effects of corruption control on economic growth in relationship with the stock market and trade openness in developing countries. The study used difference S-GMM method on the dynamic panel data model in the period (2002-2017) with data collected from the World Bank. The study discovers the dominant impacts of corruption control in the relationship with the stock market on economic growth. At the same time, the study also confirms the overwhelming impact of corruption control in the relationship between trade openness and economic growth in the developing countries. In addition, the study shows that inefficient stock markets in developing countries will not promote economic growth. Meanwhile, the long-standing credit market has a positive impact on economic growth. With the strong development of stock market and trade openness in the period (2002-2017), control on corruption in developing countries does not get better in time with the increase in demand. The findings of this study suggest a number of solutions to strengthen corruption control, leading to the increased efficiency on the stock market and as well as encouraging the positive effects of trade openness to contribute to promoting economic growth in developing countries.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

Corporate Governance and Capital Structure Decisions: Evidence from Chinese Listed Companies

  • VIJAYAKUMARAN, Sunitha;VIJAYAKUMARAN, Ratnam
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권3호
    • /
    • pp.67-79
    • /
    • 2019
  • This study examines the impact of corporate governance on capital structure decisions based on a large panel of Chinese listed firms. Using the system Generalized Method of Moments (GMM) estimator to control for unobserved heterogeneity, endogeneity, and persistency in capital structure decisions, we document that the ownership structure plays a significant role in determining leverage ratios. More specially, we find that managerial ownership has a positive and significant impact on firms' leverage, consistent with the incentive alignment hypothesis. We also find that managerial ownership only affects the leverage decisions of private firms in the post-2005 split share reform period. State ownership negatively influence leverage decisions implying that SOEs may face fewer restrictions in equity issuance and may receive favourable treatments when applying for seasoned equity ¿nancing, thus use less debt. Furthermore, our results show that while foreign ownership negatively influences leverage decisions, legal person shareholding positively influences firms' leverage decisions only for state controlled firms. We also find that the board structure variables (board size and the proportion of independent directors) do not influence firms' capital structure decisions. Our findings suggest that recent ownership reforms have been successful in terms of providing incentive to managers through managerial shareholdings to take risky financial choices.

Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식 ((Lip Recognition Using Active Shape Model and Gaussian Mixture Model))

  • 장경식;이임건
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.454-460
    • /
    • 2003
  • 이 논문은 입술의 형태를 효과적으로 인식하는 방법을 제안하였다. 입술은 PDM(Point Distribution Model)을 기반으로 점들의 집합으로 표현하였다. 주성분 분석법을 적용하여 입술 모델을 구하고 모델에서 사용하는 형태계수의 분포를 GMM(Gaussian Mixture Model)을 이용하여 구하였다. 이 과정에서 계수를 정하기 위하여 EM(Expectation Maximization) 알고리듬을 사용하였다. 입술 경계선 모델은 입술을 구성하는 각 점과 주변 영역에서의 화소간 변화를 이용하여 구성하였으며 입술 탐색시 사용되었다. 여러 영상을 대상으로 실험한 결과 좋은 결과를 얻었다.

손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증 (User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device)

  • 김용광;문종섭
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권2호
    • /
    • pp.67-74
    • /
    • 2017
  • 본 논문은 손목 착용형 웨어러블 기기를 착용한 사용자의 걸음걸이에서 흔들리는 팔의 패턴을 통하여 사용자를 인증하는 방법을 제안한다. 기기에 내장된 가속도 센서를 이용하여 샘플링된 3축 가속도 센서 데이터를 수집한다. 수집한 데이터를 신호처리 기법을 통해 변환하여 걸음의 주기를 찾고, 푸리에 변환으로 걸음걸이의 주파수와 크기를 특징으로 추출하여, 2D 혼합 가우시안 모델(GMM)로 학습한 뒤, 신뢰구간 검증 방식으로 테스트한다. 실험결과 95%의 신뢰구간에서 사용자 평균 92%로 사용자를 인증함을 보였다.

Inclusive Growth and Innovation: A Dynamic Simultaneous Equations Model on a Panel of Countries

  • Bresson, Georges;Etienne, Jean-Michel;Mohnen, Pierre
    • STI Policy Review
    • /
    • 제6권1호
    • /
    • pp.1-23
    • /
    • 2015
  • Based on the work of Anand et al. (2013) we measure inclusive income growth, which combines growth in gross domestic product (GDP) per capita and growth in the equity of the income distribution. Extending the work of Causa et al. (2014), we estimate a dynamic simultaneous structural equations model of GDP per capita and inclusive income on panel data for 63 countries over the 1990-2013 period. We estimate both equations in error correction form by difference GMM (generalized method of moments). Among the explanatory variables of the level and the distribution of GDP per capita we include R&D (research and development) expenditure per capita. In OECD countries we obtain a large positive effect of R&D on GDP. R&D is found to have a positive effect on the social mobility index but its impact on the income equity index at first decreases, then switches around to become slightly positive in the long run. In non- OECD countries, R&D is found to decrease inclusive income, mostly through a negative growth effect but also because of a slightly increasing income inequity effect.