• Title/Summary/Keyword: GHG Emission

Search Result 404, Processing Time 0.024 seconds

The Development of Emission Factors of Greenhouse Gas from Middle and Small-Scaled RPF Incineration Facility by Concentration Measurement and Fuel Composition (농도실측 및 연료 성분조성에 의한 중소형 RPF 소각시설의 온실가스 배출계수 개발)

  • Na, Kyung-Ho;Song, Il-Seok;Choi, Si-Lim;Yoo, Jae-In;Park, Ik-Beom;Kim, Jin-Gil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.423-434
    • /
    • 2012
  • This study was carried out to develop for the emission factor of greenhouse gas (GHG) from medium and smallscaled incineration facility using RPF which is considering as a part of renewable energy in UNFCC. The actual concentration of the exhaust gas and the fuel composition of RPF were measured for the calculation of GHG emission factor in RPF incinerators, and were compared with the IPCC guideline. The $CO_2$ and $N_2O$ emission factors by the actual concentration of exhaust gas were $2.3575{\pm}1.0070tCO_2/tRPF$ and $0.0014{\pm}0.0014tN_2O/tRPF$ respectively. Also, $CO_2$ emission factor by the RPF composition was $2.7057{\pm}0.0540tCO_2/tRPF$. The GHG emission factor per energy by the actual concentration was $83.0867{\pm}26.0346tCO_2e/TJ$ which showed higher consistency with the GHG emission factor ($80.3967tCO_2e/TJ$) of waste plastic in the IPCC guideline (2006b). The $CO_2$ and $N_2O$ emission factor calculated in this study is considered as a meaningful data for GHG emission factor of RPF incineration facility because of not being developed in ROK.

Estimation of Greenhouse Gas (GHG) Emissions from Livestock Agriculture in Korea (2011년도 축산부문 온실가스 인벤토리 산정 연구)

  • Yang, Seung-Hak;Choi, Dong-Yoon;Cho, Sung-Back;Hwang, Ok-Hwa;Park, Kyu-Hyun
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.139-146
    • /
    • 2014
  • This research was conducted to examine the temporal methane ($CH_4$) and nitrous oxide ($N_2O$) emission trends in livestock agriculture from year 1990 to 2011 with Tier 1 national greenhouse gas (GHG) inventory reporting method, which was related to efforts of decreasing GHG emissions and to achievement of voluntary GHG mitigation target. Methane emissions from enteric fermentation were calculated with default $CH_4$ emission factors of IPCC. Methane and $N_2O$ emissions from manure treatment processes were calculated with Tier 1 and mixture of Tier 1 and Tier 2 including $N_2O$ emission factors of manure treatment systems and nitrogen excretion rate of livestock, respectively. According to 2013 National GHG Inventory Monitoring, Reporting, and Verification report, GHG emission fluctuations from enteric fermentation and manure treatment processes were similarto livestock head fluctuation. GHG emissions from enteric fermentation were mainly affected by beef cattle including Hanwoo, while manure treatment processes were affected by various livestock.

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

A quantitative analysis of greenhouse gases emissions by multiple fisheries for catching the same species (hairtail and small yellow croaker) (동일 어종(갈치, 참조기) 어획에 대한 다수 어업별 온실가스 배출량 정량적 분석)

  • KANG, Kyoungmi;LEE, Jihoon;SHIN, Dongwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.2
    • /
    • pp.149-161
    • /
    • 2021
  • The concern on the greenhouse gas emission is strongly increasing globally. In fishery industry section, the greenhouse gas emissions are an important issue according to The Paris Climate Change Accord in 2015. The Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. Furthermore, the Korean government has also declared to achieve the carbon neutrality in 2050 at the Climate Adaptation Summit 2021. However, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. Most studies on GHG emissions from Korean fishery have dealt with the GHG emissions by fishery classification so far. However, follow-up studies related to GHG emissions from fisheries need to evaluate the GHG emission level by species to prepare the adoption of environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (hairtail and small yellow croaker) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

GHG-AP Integrated Sink/Emission Inventories and Environmental Value Analysis in Vegetation Sector of Seoul (서울시 식생부문 온실가스-대기오염 통합 흡수/배출량 인벤토리 및 환경가치분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.72-82
    • /
    • 2015
  • We constructed greenhouse gas (GHG) and air pollution (AP) integrated sink/emission inventories and evaluated the environmental value for the vegetation sector in Seoul during year 2010. The data of vegetation, classified into four sectors of cultivated land, forest land, park and street tree, were obtained from Statistics Korea and Seoul City. Based on the previous studies, only $CO_2$ was chosen as GHG sink by vegetation. $NO_2$ and $SO_2$ were chosen as AP sink by vegetation, while isoprene, monoterpene, other VOC (OVOC) and NH3 were chosen as AP emission from vegetation. Estimation methodology and sink/emission factors were gathered from reports and published literatures. Estimated GHG sink by vegetation during year 2010 was 12,987,173 $tonCO_{2eq}$, of which approximately 1/4 was from pure vegetation and the remaining 3/4 from vegetation soil. AP sink and emission were estimated to be 23,309 tonAP and 2,629,797 tonAP, respectively. The analysis by administrative districts in Seoul revealed that among 25 districts, Seocho-gu, Nowon-gu, Eunpyeong-gu, Gwanak-gu and Gangbuk-gu were the major districts in GHG and AP sink/emission inventories for vegetation sector. Environmental value of vegetation as a function of GHG and AP sink, was estimated as 800 billion won, corresponding to 5% of the total cost of the forest land in Korea evaluated as a public function.

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

A Study on Development of Reliability Assessment of GHG-CAPSS (GHG-CAPSS 신뢰도 평가 방법 개발을 위한 연구)

  • Kim, Hye Rim;Kim, Seung Do;Hong, Yu Deok;Lee, Su Bin;Jung, Ju Young
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.203-219
    • /
    • 2011
  • Greenhouse gas(GHG) inventories were reported recently in various fields. It, however, has been rarely to mention about the accuracy and reliability of the GHG inventory results. Some reliable assessment methods were introduced to judge the accuracy of the GHG inventory results. It is, hence, critical to develop an evaluation methodology. This project was designed 1) to develop evaluation methodology for reliability of inventory results by GHG-CAPSS, 2) to check the feasibility of the developed evaluation methodology as a result of applying this methodology to two emission sources: liquid fossil fuel and landfill, and 3) to construct the technical roadmap for future role of GHG-CAPSS. Qualitative and quantitative assessment methodologies were developed to check the reliability and accuracy of the inventory results. Qualitative assessment methodology was designed to evaluate the accuracy and reliability of estimation methods of GHG emissions from emission and sink sources, activity data, emission factor, and quality management schemes of inventory results. On the other hand, quantitative assessment methodology was based on the uncertainty assessment of emission results. According to the results of applying the above evaluation methodologies to two emission sources, those seem to be working properly. However, it is necessary to develop source-specific rating systems because emission and sink sources exhibit source-specific characteristics of GHG emissions and sinks.

Interrelations between Greenhouse Gas (GHG) Emission and Total Floor Area of Buildings -With the Case Study of Public Facilities in Ontario, Canada-

  • Son, Juntae;Chang, Seongju
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.95-99
    • /
    • 2017
  • Recently, it is becoming increasingly difficult to ignore carbon emission implication of building operations due to the significant rate of energy usage in buildings. In the building sector, our normal expectation implies that large building floor area induces more greenhouse gas (GHG) emission. In this research, the correlation between building total floor areas and GHG emission was explored by simple linear regression and analyzing the yielded residuals for confirming this seemingly obvious conjecture. By looking at the generated regression lines drawn based on the data sets representing public facilities in Ontario, Canada, we were able to confirm that carbon emission rate shows a proportional increase or decrease depending on the total floor area of buildings as has been implied as a conjecture. Some buildings were found to emit significantly large and small amount of GHG, and we addressed potential reasons why those buildings show the deviation from the confirmed proportional interrelation between a building's total floor area and the amount of GHG emission.

Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics (온실기체 (CH4, CO2, N2O)의 하구언갯벌 배출량과 배출특성연구)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.225-241
    • /
    • 2007
  • A closed flux chamber system was used for measuring major greenhouse gas (GHG) emission from tideland and/or wetland soils in estuarine area at Saemankum, Kunsan in southwestern Korea during from months of February to June 2006. Hourly averaged GHG soil emissions were measured two to three times a day during the ebb tide hours only. Site soils were analyzed for soil parameters (temperature, pH, total organic contents, N and C contents in soil) in the laboratory. Soil GHG fluxes were calculated based on the GHG concentration rate of change measured inside a closed chamber The analysis of GHG was conducted by using a Gas Chromatography (equipped with ECD/FID) at laboratory. Changes of daily, monthly GHGs' fluxes were examined. The relationships between the GHG emissions and soil chemical contents were also scrutinized with respect to gas production and consumption mechanism in the soil. Soil pH was pH $7.47{\pm}0.49$ in average over the experimental period. Organic matter contents in sample soil was $6.64{\pm}4.98\;g/kg$, and it shows relatively lower contents than those in agricultural soils in Kunsan area. Resulting from the soil chemistry data, soil nitrogen contents seem to affect GHG emission from the tidal land surface. The tidal soil was found to be either source or sink for the major GHG during the experimental periods. The annual average of $CH_{4}\;and\;CO_{2}$ fluxes were $0.13{\pm}0.86\;mg\;m^{-2}h^{-1}\;and\;5.83{\pm}138.73\;mg\;m^{-2}h^{-1}$, respectively, which will be as a source of these gases. However, $N_{2}O$ emission showed in negative flux, and the value was $-0.02{\pm}0.66\;mg\;m^{-2}h^{-1}$, and it implies tidal land surface act as a sink of $N_{2}O$. Over the experimental period, the absolute values of gas fluxes increased with soil temperature in general. Averages of the ambient gas concentration were $86.8{\pm}6.\;ppm$ in $CO_{2},\;1.63{\pm}0.34\;ppm\;in\;CH_{4},\;and\;0.59{\pm}0.15\;ppm\;in\;N_{2}O$, respectively. Generally, under the presence of gas emission from agricultural soils, decrease of gas emission will be observed as increase in ambient gas concentration. We, however, could not found significant correlation between the ambient concentrations and their emissions over the experimental period. There was no GHG compensation points existed in tide flat soil.