Browse > Article
http://dx.doi.org/10.3741/JKWRA.2022.55.10.785

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir  

Min, Kyeong Seo (Department of Environment Engineering, Chungbuk National University)
Chung, Se Woong (Department of Environment Engineering, Chungbuk National University)
Kim, Sung Jin (Department of Environment Engineering, Chungbuk National University)
Kim, Dong Kyun (K-water Research Institute)
Publication Information
Journal of Korea Water Resources Association / v.55, no.10, 2022 , pp. 785-799 More about this Journal
Abstract
The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.
Keywords
Reservoir; Greenhouse gas footprint; Carbon emission; G-res tool; Carbon cycle;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017a). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. Accessed 29 August 2022. .
2 Harrison, J.A., Prairie, Y.T., MercierBlais, S., and Soued, C. (2021). "Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model." Global Biogeochemical Cycles, AGU, Vol. 35, No. 6, pp. 81-95.
3 Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC guidelines for national greenhouse gas inventories, intergovernmental panel on climate change. United Nations Environment Programme, Geneva, Switzerland.
4 Louis, V.L., Kelly, C., Duchemin, E., Rudd, J., and Rosenberg, D. (2000). "Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate." BioScience, AIBS, Vol. 50, No. 9, pp. 766-775.   DOI
5 Ministry of Environment (ME) (2004). Water resources management information system, South Korea, accessed 24 August 2022, .
6 Ministry of Environment (ME) (2020). 2020 National greenhouse gas inventory report.
7 Ministry of Environment (ME) (2021). Daecheong Lake Basin organic matter balance analysis and TOC management plan.
8 Narvenkar, G., Naqvi, S.W.A., Kurian, S., Shenoy, D.M., Pratihary, A., Naik, H., Patil, S., Sarkar, A., and Gauns, M. (2013). "Dissolved methane in Indian freshwater reservoirs. Environmental monitoring and assessment." Environmental Monitoring and Assessment, Springer, Vol. 185, No. 8, pp. 6989-6999.   DOI
9 Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L.., Canadell, J.G., et al. (2011). "A large and persistent carbon sink in the world's forests." Science, AAAS, Vol. 333, No. 6045, pp. 988-993.   DOI
10 Pacheco, F.S., Soares, M.C.S., Assireu, A.T., Curtarelli, M.P., Roland, F., Abril, G., and Stech, J.L. (2015). "The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water - air CO2 fluxes in tropical hydropower reservoir." Biogeosciences, EGU, Vol. 12, No. 1, pp. 147-162.   DOI
11 Park, K.D., Jo, W.G., So, Y.H., and Kang, D.H. (2022). "Analysis of greenhouse gas research trends of hydropower dams: Focusing on foreign cases." Journal of Environmental Science International, KESS, Vol. 31, No. 2, pp. 195-213.   DOI
12 Zou, H., and Hastie, T. (2005). "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), RSS, Vol. 67, No. 2, pp. 301-320.   DOI
13 West, W.E., Creamer, K.P., and Jones, S.E. (2016). "Productivity and depth regulate lake contributions to atmospheric methane." Limnology and Oceanography, ASLO, Vol. 61, No. 1, pp. 51-61.
14 Whiting, G.J., and Chanton, J.P. (1993). "Primary production control of methane emission from wetlands." Nature, NP, Vol. 364, No. 6440, pp. 794-795.   DOI
15 World Bank (2017). Greenhouse gases from reservoirs caused by biogeochemical processes. Washington, D.C., U.S.
16 Worldwide Fund for Nature Korea (WWF-Korea) (2016). Korea ecological footprint report 2016: Measuring Korea's impact on nature.
17 Yuguda, T.K., Li, Y., Luka, B.S., and Dzarma, G.W. (2020). "Incorporating reservoir greenhouse gas emissions into carbon footprint of sugar produced from irrigated sugarcane in northeastern Nigeria." Sustainability, MDPI, Vol. 2020, No. 12, 10380. doi: 10.3390/su122410380.   DOI
18 Lee, H.S., Chung, S.W., Choi, J.K., Oh, D.G., and Heo, T.Y. (2011). "Analysis of spatial water quality variation in Daechung reservoir." Journal of Korean Society on Water Quality, KSWE, Vol. 27, No. 5, pp. 699-709.
19 Kim, S.I. (2021) "Estimation of the marginal abatement costs of projects: Malaysia." Journal of Climate Change Research, KSCC, Vol. 12, No. 5-2, pp. 601-611.   DOI
20 K-water (2006). The report of sedimentation quantity.
21 Ministry of Environment (ME) (2009). Water environment information system, South Korea, accessed 24 August 2022, .
22 Korea Energy Agency (KEA) (2015). Weekly brief issues of energy. Vol. 19, No. 86, accessed 24 August 2022, .
23 Intergovernmental Panel on Climate Change (IPCC) (2014). 2014 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change. United Nations Environment Programme, Geneva, Switzerland.
24 International Energy Agency (IEA). (2015). CO2 emissions from fuel combustion. Paris, France, pp. 1-548.
25 International Hydropower Association (IHA) (2021). Carbon emissions from hydropower reservoirs: Facts and myths, Accessed 5 August 2022, .
26 Jiang, T., Shen, Z., Liu, Y., and Hou, Y. (2018). "Carbon footprint assessment of four normal size hydropower stations in China." Sustainability, MDPI, Vol. 10, No. 6. 2018. doi: 10.3390/su10062018   DOI
27 Kim, S.C., Choe, B.G., Park, R.G., Jeong, Y.G., Park, J.H., and Lee, Y.J. (2019). "Classification criteria for the activation of small hydro power generation." Water for Future, KWRA, Vol. 52, No. 1, pp. 62-73.
28 Korea Meteorological Administration (KMA) (2015). Korea meteorological administration weather data service, South Korea, accessed 24 August 2022, .
29 K-water (2016). My-water, South Korea, accessed 24 August 2022, .
30 K-water (2021). Multi-purpose dam practical handbook.
31 Intergovernmental Panel on Climate Change (IPCC) (2013). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands, Intergovernmental Panel on Climate Change, United Nations Environment Programme, Geneva, Switzerland.
32 Goldenfum, J.A. (2018). GHG measurement guidelines for freshwater reservoirs. The International Hydropower Association (IHA), London, UK, pp. 1-154.
33 Ballantyne, A.P., Andres, R., Houghton, R., Stocker, B.D., Wanninkhof, R., Anderegg, W., Cooper, L.A., DeGrandpre, M., Tans, P.P., Miller, J.B., Alden, C., and White, J.W.C. (2015). "Audit of the global carbon budget: Estimate errors and their impact on uptake uncertainty." Biogeosciences, EGU, Vol. 12, pp. 2565-2584.   DOI
34 Beaulieu, J.J., DelSontro, T., and Downing, J.A. (2019). "Eutrophication will increase methane emissions from lakes and impoundments during the 21st century." Nature Communications, NP, Vol. 10, No. 1, 1375. doi: 10.1038/s41467-019-09100-5   DOI
35 Chung, S.W., Yoo, J.S., and Park, H.S. (2016). "Estimation of CO2 emission from a eutrophic reservoir in temperate region." Journal of Korean Society on Water Environment, KSWE, Vol. 32, No. 5, pp. 433-441.   DOI
36 Ion, I.V., and Ene, A. (2021). "Evaluation of greenhouse gas emissions from reservoirs: A review." Sustainability, MDPI, Vol. 13, No. 21, 11621. doi: 10.3390/su132111621.   DOI
37 Gorelick, N., Hancher, H., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017b). "Google earth engine: Planetary-scale geospatial analysis for everyone." Remote Sensing of Environment, Elsevier, Vol. 202, pp. 18-27.   DOI
38 Intergovernmental Panel on Climate Change (IPCC) (2011). IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
39 Intergovernmental Panel on Climate Change (IPCC) (2019). IPCC 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change. United Nations Environment Programme, Geneva, Switzerland.
40 Prairie, Y.T., Alm, J., Beaulieu, J. Barros, N., Battin, T., Cole, J., Giorgio, P., Delsontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blai, S., Serca, D., Sobek, S., and Vachon, D. (2018). "Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?" Ecosystems, Springer, Vol. 21, No. 5, pp. 1058-1071.   DOI
41 Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017a). The GHG Reservoir Tool (Gres) technical documentation v2.1 (2019-08-21). UNESCO/IHA research project on the GHG status of freshwater reservoirs. UNESCO/International Hydropower Association (IHA), London, UK.
42 Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017b). The GHG reservoir tool (G-res), UNESCO/IHA research project on the GHG status of freshwater reservoirs. Version 3.0. Accessed 09 August 2022, .
43 Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017c). User guidelines for the Earth Engine functionality v2.2 (Updated 27-10-2021). UNESCO/IHA research project on the GHG status of freshwater reservoirs. UNESCO/International Hydropower Association (IHA), London, UK.
44 Prairie, Y.T., Mercier-Blais, S., Harrison, J.A., Soued, C., del Giorgio, P., Harby, A., and Nahas, R. (2021). "A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool." Environmental Modelling & Software, Elsevier, Vol. 143, 105117. doi: 10.1016/j.envsoft.2021.105117.   DOI
45 Chung, S.W., Ko, I.H., and Oh, J.K. (2005). "Simulations of temporal and spatial distributions of rainfall-induced turbidity flow in a reservoir using CE-QUAL-W2." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 8, pp. 655-664.   DOI
46 Renewables Energy Policy Network for the 21st Century (REN21) (2021). Renewables 2021 global status report, Paris, France.
47 U.S. Department of Agriculture (USDA) (2014). Keys to soil taxonomy, 12th edition, United States Department of Agriculture Natural Resources Conservation Service, Washington, D.C., U.S.
48 Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P.A., and Roland, F. (2011). "Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude." Nature Geoscience, NP, Vol. 4, No. 9, pp. 593-596.   DOI
49 Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A. (2011). "Freshwater methane emissions offset the continental carbon sink." Science, AAAS, Vol. 331, pp. 50-56.   DOI
50 Choi, S.W., Kim, H,Y., and Kim, J. (2015). "Development of 'Carbon Footprint' concept and its utilization prospects in the agricultural and forestry sector." Korean Journal of Agricultural and Forest Meteorology, KSAFM, Vol. 17, No. 4, pp. 358-383.   DOI
51 Davidson, T.A., Audet, J., Svenning, J.C., Lauridsen, T.L., Sondergaard, M., Landkildehus, F., Larsen, S.E., and Jeppesen, E. (2015). "Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming." Global Change Biology, Wiley, Vol. 21, No. 12, pp. 4449-4463.   DOI
52 Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., Santos, M.A., and Vonk, J.A. (2016). "Greenhouse gas emissions from reservoir water surfaces: A new global synthesis." BioScience, AIBS, Vol. 66, No. 11, pp. 949-964.   DOI
53 Rasilo, T., Prairie, Y.T., and del Giorgio, P.A. (2014). "Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions." Global Change Biology, Vol. 1, pp. 1-16.
54 Rasanen, T.A., Varis, O., Scherer, L., and Kummu, M. (2018). "Greenhouse gas emissions of hydropower in the Mekong River Basin." Environmental Research Letters, IOP, Vol. 13, No. 3, 034030. doi: 10.1088/1748-9326/aaa817.   DOI
55 Vachon, D., and Prairie, Y.T. (2013). "The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes." Canadian Journal of Fisheries and Aquatic Sciences, NSCC, Vol. 70, No. 12, pp. 1757-1764.   DOI
56 West, W.E., Coloso, J.J., and Jones, S.E. (2012). "Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment." Freshwater Biology, Wiley, Vol. 57, No. 5, pp. 949-955.   DOI
57 Golub, M. (2016). Controls on temporal variation in ecosystem-atmosphere carbon dioxide exchange in lakes and reservoirs, Department of Freshwater and Marine Sciences, Ph. D. Dissertation, University of Wisconsin-Madison, WV, U.S., pp. 1-152.