• Title/Summary/Keyword: GGDH model

Search Result 4, Processing Time 0.015 seconds

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.

Impact of Secondary Currents on Solute Transport in Open-Channel Flows over Smooth-Rough Bed Strips (조(粗)·세립상(細粒床)의 연속구조를 갖는 개수로 흐름에서 오염물질 수송에 대한 이차흐름 영향 분석)

  • Kang, Hyeongsik;Choi, Sung-Uk;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.73-81
    • /
    • 2009
  • This paper presents a numerical investigation of the impact of the secondary currents on solute transport in open-channel flows. The RANS model with Reynolds stress model is used for flow modeling, and the GGDH(generalized gradient diffusion hypothesis) model is used to close the scalar transport equation. Using the developed model, the impact of secondary currents on solute transport in open channel flows over smooth-rough strip is investigated. Through numerical experiments, the secondary currents are found to affect the solute spreading, leading a movement of the position of the peak concentration and a skewed distribution of solute concentration. Due to the lateral flow of secondary currents near the free surface, the concentration at the rough strip is found to be larger than that at the smooth strip bed. The solute at the rough strip is more rapidly transported than smooth bed. A magnitude analysis of the solute transport rate in scalar transport equation is also carried out to investigate the effect of secondary currents and scalar flux on the concentration distribution.

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC BLENDING SECOND MOMENT CLOSURE (Ellipting Blending Model을 사용하여 자연대류 해석 시 난류 열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.171-176
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.

  • PDF

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.