• Title/Summary/Keyword: GEVD

Search Result 5, Processing Time 0.019 seconds

Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics

  • Liu, Y.X.;Hong, H.P.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.469-482
    • /
    • 2022
  • The generalized extreme value distribution (GEVD) is frequently used to fit the block maximum of environmental parameters such as the annual maximum wind speed. There are several methods for estimating the parameters of the GEV distribution, including the least-squares method (LSM). However, the application of the LSM with the expected order statistics has not been reported. This study fills this gap by proposing a fitting method based on the expected order statistics. The study also proposes a plotting position to approximate the expected order statistics; the proposed plotting position depends on the distribution shape parameter. The use of this approximation for distribution fitting is carried out. Simulation analysis results indicate that the developed fitting procedure based on the expected order statistics or its approximation for GEVD is effective for estimating the distribution parameters and quantiles. The values of the probability plotting correlation coefficient that may be used to test the distributional hypothesis are calculated and presented. The developed fitting method is applied to extreme thunderstorm and non-thunderstorm winds for several major cities in Canada. Also, the implication of using the GEVD and Gumbel distribution to model the extreme wind speed on the structural reliability is presented and elaborated.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

Signal parameter estimation through hierarchical conjugate gradient least squares applied to tensor decomposition

  • Liu, Long;Wang, Ling;Xie, Jian;Wang, Yuexian;Zhang, Zhaolin
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.922-931
    • /
    • 2020
  • A hierarchical iterative algorithm for the canonical polyadic decomposition (CPD) of tensors is proposed by improving the traditional conjugate gradient least squares (CGLS) method. Methods based on algebraic operations are investigated with the objective of estimating the direction of arrival (DoA) and polarization parameters of signals impinging on an array with electromagnetic (EM) vector-sensors. The proposed algorithm adopts a hierarchical iterative strategy, which enables the algorithm to obtain a fast recovery for the highly collinear factor matrix. Moreover, considering the same accuracy threshold, the proposed algorithm can achieve faster convergence compared with the alternating least squares (ALS) algorithm wherein the highly collinear factor matrix is absent. The results reveal that the proposed algorithm can achieve better performance under the condition of fewer snapshots, compared with the ALS-based algorithm and the algorithm based on generalized eigenvalue decomposition (GEVD). Furthermore, with regard to an array with a small number of sensors, the observed advantage in estimating the DoA and polarization parameters of the signal is notable.

An Adaptive Time Delay Estimation Method Based on Canonical Correlation Analysis (정준형 상관 분석을 이용한 적응 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.548-555
    • /
    • 2013
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative delay between two or more received signals for the direct signal must be determined. Although the generalized cross-correlation method is the most popular technique, an approach based on eigenvalue decomposition (EVD) is also popular one, which utilizes an eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in the low SNR and the correlated environments, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) in order to extend the operation range to the lower SNR and the correlation environments. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue in the generalized eigenvalue decomposition (GEVD). The estimated eigenvector contains all the information that we need for time delay estimation. We have performed simulations with uncorrelated and correlated noise for several SNRs, showing that the CCA based algorithm can estimate the time delays more accurately than the adaptive EVD algorithm.

A Study on the Application of Generalized Extreme Value Distribution to the Variation of Annual Maximum Surge Heights (연간 최대해일고 변동의 일반화 극치분포 적용 연구)

  • Kwon, Seok-Jae;Park, Jeong-Soo;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.241-253
    • /
    • 2009
  • This study performs the investigation of a long-term variation of annual maximum surge heights(AMSH) and main characteristics of high surge events, and the statistical evaluation of the AMSH using sea level data at Yeosu and Tongyeong tidal stations over more than 30 years. It is found that the long-term uptrends based on the linear regression in the AMSH are 34.5 cm/34 yr at Yeosu and 33.6 cm/31 yr at Tongyeong, which are relatively much higher than those at Sokcho and Mukho in the Eastern Coast. 71% and 68% of the AMSH occur during typhoon's event in Yeosu and Tongyeong tidal stations, respectively, and the highest surge records are mostly produced by the typhoon. The generalized extreme value distribution taking into account of the time variable is applied to detect time trend in annual maximum surge heights. In addition, Gumbel distribution is checked to find which one is best fitted to the data using likelihood ratio test. The return level and its 90% confidence interval are obtained for the statistical prediction of the future trend. The prevention of the growing storm surge damage by the intensified typhoon requires the steady analysis and prediction of the surge events associated with the climate change.