• Title/Summary/Keyword: GEANT4 simulation

Search Result 132, Processing Time 0.033 seconds

A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method (몬테카를로 방법에 의한 6 MV 선형가속기의 광자 흡수선량 분포 평가에 관한 연구)

  • Kang, Sang-Koo;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • In this study we modeled the varian 2100C/D linear accelerator head and multi-leaf collimator by simulation with the GEANT4 Monte Carlo toolkit. Then central axis percentage depth dose profiles and lateral dose profiles within homogeneous water phantom($50{\times}50{\times}50\;cm^3$) were evaluated with 6 MV photon beam. The simulations were performed in two stages. In the first stage, photon energy spectrum at the target were computed were computed. Then spectra data was directly irradiated in the water phantom using sampling techniques. The simulation data were compared with experimental data to evaluate the accuracy of the model. Results showed that two data were matched within 2% error boundary. The proposed method will be applied for simulation of dose calculation and dose distribution study.

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

Feasibility study of insertable miniature x-ray source for dental imaging (치과 영상용 삽입형 초소형 X선 튜브의 가능성 연구)

  • Cho, Sung-Ho;Kim, So-Yeong;An, So-Hyun;Lim, Soo-Mee;Lee, Re-Na
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Conventional periphery radiography system has a various problem such as patient dose and the pain of X-ray examination. In this paper, to solve these problems, we suggested insertional miniature x-ray system and we verified the feasibility of this system. First, we performed the Geant4 x-ray simulation to design x-ray collimator and filter to use miniature x-ray tube and we decided optimized thickness of filter and collimator. Also, we measured x-ray spectrum using CdTe detector and PX4 module to verify simulation results. Also, we acquired teeth image of fabricated phantom using conventional dental x-ray and prosed miniature x-ray system. As a results, our system has good image quality as compared to those of conventional systems. Our evaluation of the proposed system indicates that it can be potentially very useful for dental imaging.

Measurement of Neutron Production Double-differential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions

  • Itashiki, Yutaro;Imahayashi, Youichi;Shigyo, Nobuhiro;Uozumi, Yusuke;Satoh, Daiki;Kajimoto, Tsuyoshi;Sanami, Toshiya;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • Background: Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. Materials and Methods: We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. Results and Discussion: Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. Conclusion: PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1947-1954
    • /
    • 2021
  • In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.