• Title/Summary/Keyword: GEANT

Search Result 168, Processing Time 0.062 seconds

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

A feasibility study of the Iranian Sun mather type plasma focus source for neutron capture therapy using MCNP X2.6, Geant4 and FLUKA codes

  • Nanbedeh, M.;Sadat-Kiai, S.M.;Aghamohamadi, A.;Hassanzadeh, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1002-1007
    • /
    • 2020
  • The purpose of the current study was to evaluate a spectrum formulation set employed to modify the neutron spectrum of D-D fusion neutrons in a IS plasma focus device using GEANT4, MCNPX2.6, and FLUKA codes. The set consists of a moderator, reflector, collimator and filters of fast neutron and gamma radiation, which placed on the path of 2.45 MeV neutron energy. The treated neutrons eliminate cancerous tissue with minimal damage to other healthy tissue in a method called neutron therapy. The system optimized for a total neutron yield of 109 (n/s). The numerical results indicate that the GEANT4 code for the cubic geometry in the Beam Shaping Assembly 3 (BSA3) is the best choice for the energy of epithermal neutrons.

Calculation of Dose Distribution for SBRT Patient Using Geant4 Simulation Code (Geant4 전산모사 코드를 이용한 SBRT 환자의 선량분포 계산)

  • Kang, Jeongku;Lee, Jeongok;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • The Monte Carlo based dose calculation program for stereotactic body radiotherapy was developed in this study. The Geant4 toolkit widely used in the radiotherapy was used for this study. The photon energy spectrum of the medical linac studied in the previous research was applied for the patient dose calculations. The geometry of the radiation fields defined by multi-leaf collimators were taken into account in the PrimaryGeneratorAction class of the Geant4 code. The total of 8 fields were demonstrated in the patient dose calculations, where rotation matrix as a function of gantry angle was used for the determination of the source positions. The DicomHandler class converted the binary file format of the DICOM data containing the matrix number, pixel size, endian type, HU number, bit size, padding value and high bits order to the ASCII file format. The patient phantom was constructed using the converted ASCII file. The EGSnrc code was used to compare the calculation efficiency of the material data.

Finger Doses Received during $^{99m}Tc$ Injections Calculated with GEANT4 (GEANT4를 이용한 $^{99m}Tc$ 주입시 손가락 선량계산)

  • Han, Dong-Hyun;Kang, Sang-Koo;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • To estimate the finger dose absorbed by $^{99m}Tc$ injection, simulations are carried out to calculate the dose equivalent of each finger per second with radioactivity of 370 MBq, based on the GEANT4 simulator. For the $^{99m}Tc$ source of the volume of 0.4mL and the radioactivity of 370 MBq, we obtained the dose equivalent of the right thumb ($0.29\;{\mu}Sv{\cdot}sec^{-1}$), the right index finger ($1.19\;{\mu}Sv{\cdot}sec^{-1}$), the right middle finger ($1.07\;{\mu}Sv{\cdot}sec^{-1}$), the left thumb ($4.36\;{\mu}Sv{\cdot}sec^{-1}$), and the left index finger ($3.37\;{\mu}Sv{\cdot}sec^{-1}$), respectively. This simulation results may serve as a useful data in the prediction of finger dose absorbed by $^{99m}Tc$ injection.

A Comparative Study on the Dose of GEANT4-DICOM to TPS for High-Energy Radiation Treatment (고 에너지 방사선치료 시 GEANT4-DICOM과 TPS간 선량비교 연구)

  • Kwak, Keun-Tak;Kim, Yang-Soo;Kwon, Hyoung-Cheol;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.567-572
    • /
    • 2018
  • Radiation therapy is one of the beneficial choices in the treatment of cancer. This is a comparison of TPS(Treatment Planning System) and GEANT4-DICOM, which should be preceded by the best radiation therapy. A treatment plan for prostate cancer was established with Eclipse and the point doses 366.1 cGy, 189.1 cGy, 213.4 cGy, 127 cGy, 105.7 cGy of any five prostate, bladder, rectum, right femoral head and left femoral head were identified. GEANT4-DICOM simulation showed that the results of Eclipse and ${\pm}2%$ dose error were confirmed. The monthly X-ray output agreement management value recommended by TG-142 is ${\pm}2%$, which means that the experimental results can be meaningful. In conclusion, GEANT4-DICOM is an infinite way to obtain more extended dose information once the time constraints are overcome in the simulation.