• Title/Summary/Keyword: GAIT VARIABLES

Search Result 206, Processing Time 0.022 seconds

Effect of Aquatic Walking Exercise on Gait and Balance Parameters of Elderly Women (수중걷기운동이 여성노인의 보행 및 평형능력에 미치는 영향)

  • Kang, Ki-Joo;Lee, Joong-Sook;Yang, Jeong-Ok;Park, Joon-Sung;Han, Ki-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • Objective: The purpose of this study is to analyze the effects of aquatic walking exercise on gait and balance parameters of elderly women. Method: 15 elderly people were recruited for this study (age: 73.20±5.19 yrs, height: 153.87±3.36 cm, mass: 60.33±5.73 kg). All variables were measured using Gaitview AFA-50. The variables were the heel contact time ratio, gait angle, and M/P change ratio for gait patterns and ENV, REC, RMS, Total Length, TLC, Sway velocity, and Length/ENV for balance abilities. A paired t-test and the Wilcoxon signed-rank test were carried out to verify the differences in the test scores after participating in the water walking program. The significance level for all statistical analyses was set to α=.05. Results: As for the changes in their walking function after the exercise, heel contact time ratio (p<.01) showed a statistical significance, while gait angle and M/P change ratio did not reveal statistically significant differences. In the test of balance ability on both feet and with eyes opened, statistical significance was found in ENV, REC, RMS, TLC (p<.01), and sway velocity (p<.05), while the test with eyes closed showed statistical significance in length/ENV as well as ENV, REC, RMS, sway velocity (p<.01) TLC, and total length (p<.05). As for the single-leg stance balance ability, ENV and REC revealed statistically significant differences. Conclusion: These results show that water walking is effective for improving the function of the ankle flexor muscles, providing stability to the ankle joint during walking and helping efficient walk. In addition, it is also expected to help prevent falls due to loss of balance by improving the stability of lower extremity muscles and trunk.

Comparison of Robotic Tilt-table Training and Body Weight Support Treadmill Training on Lower Extremity Strength, Balance, Gait, and Satisfaction with Rehabilitation, in Patients with Subacute Stroke (아급성기 뇌졸중 환자의 다리근력, 균형, 보행, 재활만족도에 대한 로봇 보조 기립경사대 훈련과 체중지지 트레드밀 훈련의 효과 비교)

  • Kwon, Seung-Chul;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.163-174
    • /
    • 2020
  • PURPOSE: This study examined the effects of Robot Tilt-table Training (RTT) on the lower extremity strength, balance, gait, and satisfaction with rehabilitation, in patients with subacute stroke (less than six months after stroke onset), and requiring intensive rehabilitation. METHODS: A total of 29 subacute stroke patients were divided into an RTT group (n = 14) and a Body Weight Support Treadmill Training (BWSTT) group (n = 15). The mean age of patients was 62 years. RTT and BWSTT were performed for four weeks, three times a week, for 30 minutes. Isometric strength of the lower extremities before and after intervention was compared by measuring the maximal voluntary isometric contraction of the lower extremity muscles. To compare the balance function, the center of pressure (COP) path-length and COP velocity were measured. Timed Up & Go test (TUG) and 10 Meter Walking Test (10 MWT) were evaluated to compare the gait function. A satisfaction with rehabilitation survey was conducted for subjective evaluation of the subject's satisfaction with the rehabilitation training imparted. RESULTS: In the intra-group comparison, both groups showed significant improvement in lower extremity strength, balance, gait, and satisfaction with rehabilitation, by comparing the parameters before and after the intervention (p < .05). Comparison of the amount of change between groups revealed significant improvement for all parameters in the RTT group, except for the 10 MWT (p < .05). CONCLUSION: Both groups are effective for all variables, but the RTT group showed enhanced efficacy for variables such as lower extremity strength, balance, gait, and satisfaction with rehabilitation, as compared to the BWSTT group.

The effects of virtual reality training on gait, balance, and upper extremity function in patients with stroke: A meta-analysis

  • Lee, Hyun soo;Kim, You Lim;Lee, Hae ji;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.3
    • /
    • pp.11-29
    • /
    • 2021
  • Background: The purpose of this study is to investigate the effects of virtual reality on gait, balance, and upper extremity functions compared to other independent variables or no variables. Additionally, the possibility of virtual reality for stroke patients was discussed. Design: Meta-analysis. Methods: The search for this study was a search term that combined stroke, virtual reality, and training, and the electronic search was conducted through EMBASE, MEDLINE, and Cochrane Library. As a result of the search, 21 studies satisfying the selection criteria of the target study were confirmed as the final analysis target. This study consisted of 21 randomized experimental studies and 21 randomized controlled trials, and the total number of participants was 642. [Experimental group (n=314), control group (n=328); total 642]. As a result of the study, upper extremity function was assessed using a box and block test, a modified Ashworth scale, and a scale including range of motion. The balance was evaluated by the berg balance scale. Gait was a Timed Up and Go test (TUG), stride length, and gait function. Scales including a walking rate scale were evaluated. The effect size for the intervention of the analytical study was meta-analyzed with the RevMan 5.3.3 program of the Cochrane library. Results: The results of the study showed that the function of walking was statistically significant. Balance showed statistically significant results. The upper extremity function showed no statistically significant results. Conclusion: Through this rehabilitation treatment by applying virtual reality environment to the rehabilitation of stroke patients in the future can be proposed as an effective intervention method for the balance and gait function of stroke patients.

The Effects of Eccentric Training Applied to Calf Muscles on Muscle Tone, Muscle Strength and Gait of Patients with Chronic Stroke (만성 뇌졸중 환자의 종아리 근육에 적용한 편심성 훈련이 근긴장도와 근력 및 보행에 미치는 영향)

  • Ji-Hyun Bae;Young-Keun Woo;Yong-Wook Kim;Kyue-Nam Park
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.113-128
    • /
    • 2024
  • Purpose: This study aimed to investigate the effects of eccentric training applied to the calf muscles on muscle tone, muscle strength, and gait variables in patients with chronic stroke. Methods: Twenty-two participants were divided into experimental (n=12; eccentric training) and control (n=10; static stretching and stretching board) groups. The participants completed 30-minute physical therapy sessions five times a week for three weeks. Calf muscle tone, muscle strength, and gait variables were measured using MyotonPRO, a hand-held dynamometer, and Optogait, respectively, before and after each intervention. Results: Two-way analysis of variance (ANOVA) indicated a significant interaction effect between measurement points and groups in frequency, stiffness, and decrement of the lateral gastrocnemius, medial gastrocnemius, and soleus muscles (p<.05). Paired t-tests showed that the experimental group exhibited significantly decreased frequency and stiffness scores for the lateral gastrocnemius, medial gastrocnemius, and soleus muscles (p<.05), as well as significantly increased decrement and muscle strength scores, gait speed, step length, and stride length (p<.05). Conclusion: The application of eccentric training to the calf effectively reduced muscle tone, increased muscle strength, and improved the gait speed, step length, and stride length of patients with chronic stroke.

Affect of gait with splint and crutch has on basal metabolism young women (부목과 목발을 이용한 보행이 20대 여성의 에너지대사량에 미치는 영향)

  • Lee, Ji-Yeun;Park, Jung-Seo;Lee, Dae-Hee;Han, Seul-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4001-4007
    • /
    • 2011
  • In this study, we selected ten normal women in their 20's and 4 weeks measured Exercise Intensity, Voluntary Ventilation, Respiratory Exchange Ratio, Oxygen and Calorie Consumption and Ventilation Equivalent of them during Normal Gait, Splint-equipped Gait and Crutch Gait With Splint in order to find out whether the movement limitation and the weight of orthosis could have an effect on energy consumption. Each gait was conducted at a comfortable speed, 2.74 km/h for 30 minutes equipped with splint whose average weight is 1.2 kg. In the result of the study, The Crutch Gait With Splint showed high Exercise Intensity compaired to Normal Gait and Splint-equipped Gait. In addtion, in The Voluntary Ventilation and Oxygen Consumption, The Crutch Gait showed higher figures than two the others and the difference was significant as well(p<0.05). As for The Calorie Consumption, it also showed higher figures than two the others but the difference was not statistically significant. Finally, in The Respiratory Exchange Ratio and The Ventilation Equivalent, there was no significant difference among three conditional variables.

Effects of a Real-time Plantar Pressure Feedback during Gait Training on the Weight Distribution of the Paralyzed Side and Gait Function in Stroke Patients

  • Kim, Tae-Wu;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • PURPOSE: This study was conducted to investigate the effect of a real-time pressure feedback provided during gait training on the weight weight distribution of the inner part of mid-foot in paralyzed side and gait function in stroke patients. METHODS: A total of 24 patients with hemiplegic stroke in a rehabilitation hospital were randomly assigned to the experimental and control group. All participants (n = 24) performed 15 min of comprehensive rehabilitation therapy 5 times a week for a period of 4 weeks. Additionally, the experimental group and control group underwent gait training with a real time feedback and general gait training, respectively, for 15 min five times a week for 4 weeks. Weight distribution and gait function were measured before and after the 4-week training. RESULTS: Significant increases in the weight distribution (WD), stance time (ST) and step length (SL) of the paralyzed side, and a significant decrease in the 10 m walking test (10 MWT) observed after training in the two groups (p < .05). The experimental group showed larger changes in the all variables than the control group (WD, +10.5 kg vs. +8.8 kg, p < .05; ST, 12.8 s vs. 4.9 s, p < .05; SL, 4.9 cm vs. 1.7 cm, p < .05; 10 MWT, -3.5 s vs. -1.0 s, p < .05, respectively). CONCLUSION: Gait training with a real-time feedback might be effective in improving the normalization of weight bearing of the paralyzed lower extremity and gait function of stroke patients, and be considered to be a more effective gait training for improving the abilities than the general gait training.

Effects of Diagonal Pattern Self-Exercise on Trunk Control, Balance, and Gait Ability in Chronic Stroke Patients

  • Yang, Jaeho;Park, Shinjun;Kim, Soonhee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2028-2035
    • /
    • 2020
  • Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.

Effects of ball kicking dual task training on gait performance and balance in individuals with chronic hemiparetic stroke

  • Kim, Minseong;Shim, Jaehun;Yu, Kyunghoon;Kim, Jiwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.170-176
    • /
    • 2016
  • Objective: The purpose of this study was to compare the effect of ball kicking dual task gait training with the addition of a cognitive task with general treadmill gait training (TGT) on gait speed, gait endurance, functional gait, balance and balance confidence in patients with chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: Fourteen stroke patients who volunteered to participate in this study were randomly divided into two groups with seven patients in each group: ball kicking dual task training (DTT) group and TGT group. The DTT group received ball kicking DTT with cognitive tasks consisted of three stages and the TGT group received TGT using normal walking speed, respectively, for 30 minutes per day 3 days per week for 4 weeks. Outcome assessments were made with the 10-meter walking test (10MWT), 6-minute walking test (6MWT), functional gait assessment (FGA), Berg balance scale (BBS), timed up and go test (TUG), and the activities-specific balance confidence (ABC) scale. Results: The DTT group showed more significant improvement in the 10MWT, 6MWT, FGA, BBS, TUG, and ABC than the TGT group (p<0.05). In addition, within groups comparison showed significant improvement in all variables (p<0.05). Conclusions: The findings suggest that both ball kicking dual task gait training and TGT improve gait performance and balance in patients with chronic hemiparetic stroke. However, ball kicking dual task gait training results showed more favorable outcomes than TGT for chronic hemiparetic stoke patients.

A Case Report of an Intervention Strategy that Applied an ICF Tool to Improve the Walking Ability of Stroke Patients (뇌졸중 환자의 보행능력 증진을 위한 ICF(International Classification of Functioning, Disability and Health) Tool을 적용한 중재전략의 증례)

  • Bang, Dae-Hyouk;Song, Myung-Soo;Jeong, Wang-Mo;Bong, Soon-Nyung
    • PNF and Movement
    • /
    • v.12 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • Purpose: The objective of this study was to identify functional problems, including walking ability, of patients with strokes using the International Classification of Functioning, Disability, and Health (ICF) and to present a method that could solve functional problems, thereby determining the applicability of the ICF to increase the quality of evaluation and intervention in clinical fields in the future. Methods: Information on stroke patients who were admitted and treated in a hospital was collected. The authors conducted evaluations, interventions, and measurements of the results of the ICF tool in order to improve gait abilities of patients. The subjects were trained using proprioceptive neuromuscular facilitation (PNF) one hour a day and five times a week for four weeks. The result measurement variables were a six-minute gait test, 10 m velocity test, gait instability test, and measurements using the ICF sheet. Results: In the six-minute gait test, gait distance increased by 48 m, from 102 m to 150 m. The gait velocity test result showed an improvement from 0.36m/s to 0.44m/s. The subjects performed a gait instabilitytestwithacupfilledwith50mmwater. In the gait instability test, the amount of water was 38 mm before the intervention; however, it was 50 mm after the intervention. The gait velocity with a cup filled with water improved from 0.25m/s to 0.31m/s. Conclusion: An evaluation and intervention were designed with the ICF tool for stroke patients. Gait abilities improved when the PNF technique was used. The IFC method can be used for evaluation and intervention, and it could help improve gait abilities of stroke patients.

Developing an Biomechanical Functional Performance Index for Parkinson's Disease Patients (한국형 파킨슨 환자의 역학적 기능수행지수 개발)

  • Shin, Sunghoon;Han, Byungin;Chung, Chulmin;Lee, Yungon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • Objective: The study aimed to develop a functional performance index that evaluates the functional performance of Parkinson's patients, i.e., to integrate biomechanical measurements of walking, balance, muscle strength and tremor, and to use multiple linear regression with stepwise methods to identify the most suitable predictors for the progression of disease. Method: A total of 60 subjects were tested for sub-variables of four factors: walking, balance, isometric strength and hand tremors. Potential independet variables were extracted through correlation analysis of the sub-variables and dependent variables, Hoehn & Yahr scale. And then, a stepwise multiple regression analysis using the potential independent variables was performed to identify predictor of Hoehn & Yahr scale. Results: First, the results of the study showed that physical composition and gait had a relatively more correlated with the progression of the disease, compared to balance and hand tremor. Second, Parkinson's functional performance is characterized by dynamic pattern of walking, such as foot clearance and turning angle (TA) of walking, and a high-explained regression model is completed. Conclusion: The study emphasized the importance of walking variables and body composition in minor pathological features compared to Parkinson's patient's balancing ability and hand tremor. Specifically, it revealed that dynamic walking patterns functionally characterize patients. The results are worth considering when assessing functional performance related to the progression of the disease at the site.